What are the expansions of Bose functions for studying thermodynamic behavior?

erbilsilik
Messages
19
Reaction score
2

Homework Statement


To study the thermodynamic behavior of the limit $$z\rightarrow1$$ it is useful to get the expansions of $$g_{0}\left( z\right),g_{1}\left( z\right),g_{2}\left( z\right)$$

$$\alpha =-\ln z$$ which is small positive number. From, BE integral,
$$g_{1}\left( \alpha \right) =-ln\left( 1-z\right) =-ln\alpha+\dfrac {\alpha } {2}-\dfrac {\alpha ^{2}} {24}+O({\alpha ^{4}})$$
and hence

$$g_{0}\left( \alpha \right) =-\dfrac {\partial } {\partial \alpha }g_{1}\left( \alpha \right)=\dfrac {1} {\alpha }-\dfrac {1} {2}+\dfrac {\alpha } {12}O({\alpha ^{3}})$$

[Source: A.Khare, Fractional Statistics and Quantum Theory, Two Dimensional Bose Gas, p.113]

Could anyone help me to derive this expressions? I can't figure out what does it mean writing this functions in the powers of α.

Homework Equations


https://en.wikipedia.org/wiki/Polylogarithm (BE integral)

The Attempt at a Solution



[/B]
 
erbilsilik said:

Homework Statement


To study the thermodynamic behavior of the limit $$z\rightarrow1$$ it is useful to get the expansions of $$g_{0}\left( z\right),g_{1}\left( z\right),g_{2}\left( z\right)$$

$$\alpha =-\ln z$$ which is small positive number. From, BE integral,
$$g_{1}\left( \alpha \right) =-ln\left( 1-z\right) =-ln\alpha+\dfrac {\alpha } {2}-\dfrac {\alpha ^{2}} {24}+O({\alpha ^{4}})$$
and hence

$$g_{0}\left( \alpha \right) =-\dfrac {\partial } {\partial \alpha }g_{1}\left( \alpha \right)=\dfrac {1} {\alpha }-\dfrac {1} {2}+\dfrac {\alpha } {12}O({\alpha ^{3}})$$

[Source: A.Khare, Fractional Statistics and Quantum Theory, Two Dimensional Bose Gas, p.113]

Could anyone help me to derive this expressions? I can't figure out what does it mean writing this functions in the powers of α.

Homework Equations


https://en.wikipedia.org/wiki/Polylogarithm (BE integral)

The Attempt at a Solution


[/B]
Suggestion: Write ## z=exp(-\alpha) ## and you get a term ## ln(exp(\alpha)-1) ## plus another term ## ln(exp(\alpha))=\alpha ## In the first term (inside the ## ln ## ) expand ## exp(\alpha) =1+\alpha+(\alpha)^2/2 +... ## and subtract the 1. Then factor out ## \alpha ## and you get ## ln(\alpha)+ln(1+\alpha/2+..) ## The expansion of ## ln(1+u)=u ## for small ## u ##.
 
  • Like
Likes erbilsilik
  • Like
Likes Charles Link
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top