What are the expectation values for position and momentum in states Ψ0 and Ψ1?

Somali_Physicist
Messages
117
Reaction score
13
Homework Statement
Look Below Picture
Relevant Equations
Look in Picture
Capture.PNG


For question 2.2:

0|p|Ψ0> = ∫Ψ0 -iħ d/dx(Ψ0) =M

Using Integration by parts i get:

M = -Ψ0 iħ d/dx(Ψ0) (assuming hilbert space)

Implying the expectation values for momentum are zero , however i get all the expectation values are zero for x and momentum in both states which makes no sense :(
 
Physics news on Phys.org
Somali_Physicist said:
Homework Statement: Look Below Picture
Homework Equations: Look in Picture

View attachment 248596

For question 2.2:

0|p|Ψ0> = ∫Ψ0 -iħ d/dx(Ψ0) =M

Using Integration by parts i get:

M = -Ψ0 iħ d/dx(Ψ0) (assuming hilbert space)

Implying the expectation values for momentum are zero , however i get all the expectation values are zero for x and momentum in both states which makes no sense :(
I don't know whether that's correct for this question, as I haven't checked; but, why do you think it makes no sense?
 
PeroK said:
I don't know whether that's correct for this question, as I haven't checked; but, why do you think it makes no sense?
Because everything being zero normally means I am wrong.
 
  • Like
Likes PeroK
I worked out 2.2 abit and also I got that the expectation values for position and momentum for state ##\psi_0## are zero. And I think the same hold for state ##\psi_1##. It is because we always get a product of an odd and an even function in the integrals (since ##\psi_0## is even, ##\psi_0'## is odd ,##\psi_0''## is even and x is odd). So at the very end we get integrals of an odd function which gives zero.
 
  • Like
Likes Somali_Physicist and PeroK
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top