What are the Standard Integrals?

Messages
19,773
Reaction score
10,726
Definition/Summary

This article is a list of standard integrals, i.e. the integrals which are commonly used while evaluating problems and as such, are taken for granted. This is a reference article, and can be used to look up the various integrals which might help while solving problems.

Equations



Extended explanation

List of Standard Integrals


1. Integrals of Polynomial functions

i] \int x^n \,dx = \frac{x^{n + 1}}{n + 1} + C \hspace{0.25in} (n \ne -1)

ii] \int \frac{1}{x} \,dx = \log_e |x| + C

2. Integrals of Exponential functions

iii] \int e^x \,dx = e^x + C

iv] \int a^x \,dx = \frac{a^x}{\log_e a} + C

2. Integrals of Trignometric functions

v] \int \sin x \,dx = - \cos x + C

vi] \int \cos x \,dx = \sin x + C

vii] \int \sec^2 x \,dx = \tan x + C

viii] \int \csc^2 x \,dx = -\cot x + C

ix] \int \sec x \tan x \,dx = \sec x + C

x] \int \csc x \cot x \,dx = -\csc x + C

xi] \int \cot x \,dx = \log_e |\sin x| + C

xii] \int \tan x \,dx = -\log_e |\cos x| + C

xiii] \int \sec x \,dx = \log_e |\sec x + \tan x|\ +\ C\ = \cosh^{-1}(\sec x)\ +\ C
= sech^{-1}(\cos x)\ +\ C\ = \tanh^{-1}(\sin x)\ +\ C\ = \coth^{-1}(\csc x)\ +\ C


xiv] \int \csc x \,dx = \log_e |\csc x - \cot x|\ +\ C\ = -\cosh^{-1}(\csc x)\ +\ C
= -sech^{-1}(\sin x)\ +\ C\ = -\tanh^{-1}(\cos x)\ +\ C\ = -\coth^{-1}(\sec x)\ +\ C
]

3. Integrals of Hyperbolic Functions

xv] \int\sinh ax \,dx = \frac{1}{a}\cosh ax + C

xvi] \int\cosh ax \,dx = \frac{1}{a}\sinh ax + C

xvii] \int \tanh ax \,dx = \frac{1}{a}\log_e|\cosh ax| + C

xviii] \int \coth ax \,dx = \frac{1}{a}\log_e|\sinh ax| + C

xviiiA] \int sech x \,dx\ = \cos^{-1}(sech x)\ +\ C
= \sec^{-1}(\cosh x)\ +\ C\ = \tan^{-1}(\sinh x)\ +\ C\ = -\tan^{-1}(cosech x)\ +\ C
= \cot^{-1}(cosech x)\ +\ C\ = -\cot^{-1}(\sinh x)\ +\ C


4. Integrals of Reciprocals of Quadratic and Root Quadratic functions

xix] \int \frac{1}{\sqrt{a^2 - x^2}} \,dx = \arcsin \left(\frac{x}{a}\right) + C

xx] \int - \frac{1}{\sqrt{a^2 - x^2}} \,dx = \arccos \left(\frac{x}{a}\right) + C

xxi] \int \frac{1}{x^2 + a^2} \,dx = \frac{1}{a} \arctan \left(\frac{x}{a}\right) + C

xxii] \int - \frac{1}{x^2 + a^2} \,dx = \frac{1}{a} \,\mathrm{arccot} \left(\frac{x}{a}\right) + C

xxiii] \int \frac{1}{x\sqrt{x^2 - a^2}} \,dx = \frac{1}{a} \,\mathrm{arcsec} \left(\frac{x}{a}\right)\ +\ C = \frac{1}{a} \arccos \left(\frac{a}{x}\right)\ +\ C

xxiv] \int - \frac{1}{x\sqrt{x^2 - a^2}} \,dx = \frac{1}{a} \,\mathrm{arccsc} \left(\frac{x}{a}\right)\ +\ C = \frac{1}{a} \arcsin \left(\frac{a}{x}\right)\ +\ C

xxv] \int \frac{1}{x^2 - a^2} \,dx = \frac{1}{2a} \log_e \left|\frac{x - a}{x + a}\right|\ +\ C = \frac{1}{a}\tanh^{-1} \left(\frac{a}{x}\right)\ +\ C

xxvi] \int \frac{1}{a^2 - x^2} \,dx = \frac{1}{2a} \log_e \left|\frac{a + x}{a - x}\right|\ +\ C = \frac{1}{a}\tanh^{-1} \left(\frac{x}{a}\right)\ +\ C

xxvii] \int \frac{1}{\sqrt{a^2 + x^2}} \,dx = \log_e |x + \sqrt{a^2 + x^2}|\ +\ C = \sinh^{-1} \left(\frac{x}{a}\right)\ +\ C

xxviii] \int \frac{1}{\sqrt{x^2 - a^2}} \,dx = \log_e |x + \sqrt{x^2 - a^2}|\ +\ C = \cosh^{-1} \left(\frac{x}{a}\right)\ +\ C

5. Integrals of Root Quadratic functions

xxix] \int \sqrt{a^2 - x^2} \,dx = \frac{x}{2} \sqrt{a^2 - x^2}\ +\ \frac{a^2}{2} \arcsin {\left(\frac{x}{a}\right)}\ +\ C

xxx] \int \sqrt{x^2 - a^2} \,dx = \frac{x}{2} \sqrt{x^2 - a^2}\ +\ \frac{a^2}{2} \log_e |x + \sqrt{x^2 - a^2}|\ +\ C

xxxi] \int \sqrt{x^2 + a^2} \,dx = \frac{x}{2} \sqrt{x^2 + a^2}\ +\ \frac{a^2}{2} \log_e |x + \sqrt{x^2 + a^2}|\ +\ C

6. Integrals of Inverse Trignometric Functions

xxxii] \int \arcsin x \,dx = x \arcsin x + \sqrt{1 - x^2} + C

xxxiii] \int \arctan x \,dx = x \arctan x - \frac{1}{2} \log_e |1 + x^2| + C

xxxiv] \int \mathrm{arcsec}\,x \,dx = x \,\mathrm{arcsec}\,x\ -\ \log_e |x + \sqrt{x^2 - 1}|\ +\ C

7. Definite Integrals

xxxv] \int_{-\infty}^{\infty}{e^{-x^2} \,dx} = \sqrt \pi

xxxvi] \int_0^{\infty} x^{n-1} e^{-x} \,dx = \Gamma(n)

xxxvii] \int_{-\infty}^{\infty}\frac{\sin x}{x} \,dx= \pi

xxxviii] \int_{-\infty}^{\infty}\frac{\sin^2{x}}{x^2} \,dx= \pi

* This entry is from our old Library feature. If you know who wrote it, please let us know so we can attribute a writer. Thanks!
 
Mathematics news on Phys.org
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top