- 19,773
- 10,726
Definition/Summary
This article is a list of standard integrals, i.e. the integrals which are commonly used while evaluating problems and as such, are taken for granted. This is a reference article, and can be used to look up the various integrals which might help while solving problems.
Equations
Extended explanation
List of Standard Integrals
1. Integrals of Polynomial functions
i] \int x^n \,dx = \frac{x^{n + 1}}{n + 1} + C \hspace{0.25in} (n \ne -1)
ii] \int \frac{1}{x} \,dx = \log_e |x| + C
2. Integrals of Exponential functions
iii] \int e^x \,dx = e^x + C
iv] \int a^x \,dx = \frac{a^x}{\log_e a} + C
2. Integrals of Trignometric functions
v] \int \sin x \,dx = - \cos x + C
vi] \int \cos x \,dx = \sin x + C
vii] \int \sec^2 x \,dx = \tan x + C
viii] \int \csc^2 x \,dx = -\cot x + C
ix] \int \sec x \tan x \,dx = \sec x + C
x] \int \csc x \cot x \,dx = -\csc x + C
xi] \int \cot x \,dx = \log_e |\sin x| + C
xii] \int \tan x \,dx = -\log_e |\cos x| + C
xiii] \int \sec x \,dx = \log_e |\sec x + \tan x|\ +\ C\ = \cosh^{-1}(\sec x)\ +\ C
xiv] \int \csc x \,dx = \log_e |\csc x - \cot x|\ +\ C\ = -\cosh^{-1}(\csc x)\ +\ C
3. Integrals of Hyperbolic Functions
xv] \int\sinh ax \,dx = \frac{1}{a}\cosh ax + C
xvi] \int\cosh ax \,dx = \frac{1}{a}\sinh ax + C
xvii] \int \tanh ax \,dx = \frac{1}{a}\log_e|\cosh ax| + C
xviii] \int \coth ax \,dx = \frac{1}{a}\log_e|\sinh ax| + C
xviiiA] \int sech x \,dx\ = \cos^{-1}(sech x)\ +\ C
4. Integrals of Reciprocals of Quadratic and Root Quadratic functions
xix] \int \frac{1}{\sqrt{a^2 - x^2}} \,dx = \arcsin \left(\frac{x}{a}\right) + C
xx] \int - \frac{1}{\sqrt{a^2 - x^2}} \,dx = \arccos \left(\frac{x}{a}\right) + C
xxi] \int \frac{1}{x^2 + a^2} \,dx = \frac{1}{a} \arctan \left(\frac{x}{a}\right) + C
xxii] \int - \frac{1}{x^2 + a^2} \,dx = \frac{1}{a} \,\mathrm{arccot} \left(\frac{x}{a}\right) + C
xxiii] \int \frac{1}{x\sqrt{x^2 - a^2}} \,dx = \frac{1}{a} \,\mathrm{arcsec} \left(\frac{x}{a}\right)\ +\ C = \frac{1}{a} \arccos \left(\frac{a}{x}\right)\ +\ C
xxiv] \int - \frac{1}{x\sqrt{x^2 - a^2}} \,dx = \frac{1}{a} \,\mathrm{arccsc} \left(\frac{x}{a}\right)\ +\ C = \frac{1}{a} \arcsin \left(\frac{a}{x}\right)\ +\ C
xxv] \int \frac{1}{x^2 - a^2} \,dx = \frac{1}{2a} \log_e \left|\frac{x - a}{x + a}\right|\ +\ C = \frac{1}{a}\tanh^{-1} \left(\frac{a}{x}\right)\ +\ C
xxvi] \int \frac{1}{a^2 - x^2} \,dx = \frac{1}{2a} \log_e \left|\frac{a + x}{a - x}\right|\ +\ C = \frac{1}{a}\tanh^{-1} \left(\frac{x}{a}\right)\ +\ C
xxvii] \int \frac{1}{\sqrt{a^2 + x^2}} \,dx = \log_e |x + \sqrt{a^2 + x^2}|\ +\ C = \sinh^{-1} \left(\frac{x}{a}\right)\ +\ C
xxviii] \int \frac{1}{\sqrt{x^2 - a^2}} \,dx = \log_e |x + \sqrt{x^2 - a^2}|\ +\ C = \cosh^{-1} \left(\frac{x}{a}\right)\ +\ C
5. Integrals of Root Quadratic functions
xxix] \int \sqrt{a^2 - x^2} \,dx = \frac{x}{2} \sqrt{a^2 - x^2}\ +\ \frac{a^2}{2} \arcsin {\left(\frac{x}{a}\right)}\ +\ C
xxx] \int \sqrt{x^2 - a^2} \,dx = \frac{x}{2} \sqrt{x^2 - a^2}\ +\ \frac{a^2}{2} \log_e |x + \sqrt{x^2 - a^2}|\ +\ C
xxxi] \int \sqrt{x^2 + a^2} \,dx = \frac{x}{2} \sqrt{x^2 + a^2}\ +\ \frac{a^2}{2} \log_e |x + \sqrt{x^2 + a^2}|\ +\ C
6. Integrals of Inverse Trignometric Functions
xxxii] \int \arcsin x \,dx = x \arcsin x + \sqrt{1 - x^2} + C
xxxiii] \int \arctan x \,dx = x \arctan x - \frac{1}{2} \log_e |1 + x^2| + C
xxxiv] \int \mathrm{arcsec}\,x \,dx = x \,\mathrm{arcsec}\,x\ -\ \log_e |x + \sqrt{x^2 - 1}|\ +\ C
7. Definite Integrals
xxxv] \int_{-\infty}^{\infty}{e^{-x^2} \,dx} = \sqrt \pi
xxxvi] \int_0^{\infty} x^{n-1} e^{-x} \,dx = \Gamma(n)
xxxvii] \int_{-\infty}^{\infty}\frac{\sin x}{x} \,dx= \pi
xxxviii] \int_{-\infty}^{\infty}\frac{\sin^2{x}}{x^2} \,dx= \pi
* This entry is from our old Library feature. If you know who wrote it, please let us know so we can attribute a writer. Thanks!
This article is a list of standard integrals, i.e. the integrals which are commonly used while evaluating problems and as such, are taken for granted. This is a reference article, and can be used to look up the various integrals which might help while solving problems.
Equations
Extended explanation
List of Standard Integrals
1. Integrals of Polynomial functions
i] \int x^n \,dx = \frac{x^{n + 1}}{n + 1} + C \hspace{0.25in} (n \ne -1)
ii] \int \frac{1}{x} \,dx = \log_e |x| + C
2. Integrals of Exponential functions
iii] \int e^x \,dx = e^x + C
iv] \int a^x \,dx = \frac{a^x}{\log_e a} + C
2. Integrals of Trignometric functions
v] \int \sin x \,dx = - \cos x + C
vi] \int \cos x \,dx = \sin x + C
vii] \int \sec^2 x \,dx = \tan x + C
viii] \int \csc^2 x \,dx = -\cot x + C
ix] \int \sec x \tan x \,dx = \sec x + C
x] \int \csc x \cot x \,dx = -\csc x + C
xi] \int \cot x \,dx = \log_e |\sin x| + C
xii] \int \tan x \,dx = -\log_e |\cos x| + C
xiii] \int \sec x \,dx = \log_e |\sec x + \tan x|\ +\ C\ = \cosh^{-1}(\sec x)\ +\ C
= sech^{-1}(\cos x)\ +\ C\ = \tanh^{-1}(\sin x)\ +\ C\ = \coth^{-1}(\csc x)\ +\ C
xiv] \int \csc x \,dx = \log_e |\csc x - \cot x|\ +\ C\ = -\cosh^{-1}(\csc x)\ +\ C
= -sech^{-1}(\sin x)\ +\ C\ = -\tanh^{-1}(\cos x)\ +\ C\ = -\coth^{-1}(\sec x)\ +\ C
]3. Integrals of Hyperbolic Functions
xv] \int\sinh ax \,dx = \frac{1}{a}\cosh ax + C
xvi] \int\cosh ax \,dx = \frac{1}{a}\sinh ax + C
xvii] \int \tanh ax \,dx = \frac{1}{a}\log_e|\cosh ax| + C
xviii] \int \coth ax \,dx = \frac{1}{a}\log_e|\sinh ax| + C
xviiiA] \int sech x \,dx\ = \cos^{-1}(sech x)\ +\ C
= \sec^{-1}(\cosh x)\ +\ C\ = \tan^{-1}(\sinh x)\ +\ C\ = -\tan^{-1}(cosech x)\ +\ C
= \cot^{-1}(cosech x)\ +\ C\ = -\cot^{-1}(\sinh x)\ +\ C
= \cot^{-1}(cosech x)\ +\ C\ = -\cot^{-1}(\sinh x)\ +\ C
4. Integrals of Reciprocals of Quadratic and Root Quadratic functions
xix] \int \frac{1}{\sqrt{a^2 - x^2}} \,dx = \arcsin \left(\frac{x}{a}\right) + C
xx] \int - \frac{1}{\sqrt{a^2 - x^2}} \,dx = \arccos \left(\frac{x}{a}\right) + C
xxi] \int \frac{1}{x^2 + a^2} \,dx = \frac{1}{a} \arctan \left(\frac{x}{a}\right) + C
xxii] \int - \frac{1}{x^2 + a^2} \,dx = \frac{1}{a} \,\mathrm{arccot} \left(\frac{x}{a}\right) + C
xxiii] \int \frac{1}{x\sqrt{x^2 - a^2}} \,dx = \frac{1}{a} \,\mathrm{arcsec} \left(\frac{x}{a}\right)\ +\ C = \frac{1}{a} \arccos \left(\frac{a}{x}\right)\ +\ C
xxiv] \int - \frac{1}{x\sqrt{x^2 - a^2}} \,dx = \frac{1}{a} \,\mathrm{arccsc} \left(\frac{x}{a}\right)\ +\ C = \frac{1}{a} \arcsin \left(\frac{a}{x}\right)\ +\ C
xxv] \int \frac{1}{x^2 - a^2} \,dx = \frac{1}{2a} \log_e \left|\frac{x - a}{x + a}\right|\ +\ C = \frac{1}{a}\tanh^{-1} \left(\frac{a}{x}\right)\ +\ C
xxvi] \int \frac{1}{a^2 - x^2} \,dx = \frac{1}{2a} \log_e \left|\frac{a + x}{a - x}\right|\ +\ C = \frac{1}{a}\tanh^{-1} \left(\frac{x}{a}\right)\ +\ C
xxvii] \int \frac{1}{\sqrt{a^2 + x^2}} \,dx = \log_e |x + \sqrt{a^2 + x^2}|\ +\ C = \sinh^{-1} \left(\frac{x}{a}\right)\ +\ C
xxviii] \int \frac{1}{\sqrt{x^2 - a^2}} \,dx = \log_e |x + \sqrt{x^2 - a^2}|\ +\ C = \cosh^{-1} \left(\frac{x}{a}\right)\ +\ C
5. Integrals of Root Quadratic functions
xxix] \int \sqrt{a^2 - x^2} \,dx = \frac{x}{2} \sqrt{a^2 - x^2}\ +\ \frac{a^2}{2} \arcsin {\left(\frac{x}{a}\right)}\ +\ C
xxx] \int \sqrt{x^2 - a^2} \,dx = \frac{x}{2} \sqrt{x^2 - a^2}\ +\ \frac{a^2}{2} \log_e |x + \sqrt{x^2 - a^2}|\ +\ C
xxxi] \int \sqrt{x^2 + a^2} \,dx = \frac{x}{2} \sqrt{x^2 + a^2}\ +\ \frac{a^2}{2} \log_e |x + \sqrt{x^2 + a^2}|\ +\ C
6. Integrals of Inverse Trignometric Functions
xxxii] \int \arcsin x \,dx = x \arcsin x + \sqrt{1 - x^2} + C
xxxiii] \int \arctan x \,dx = x \arctan x - \frac{1}{2} \log_e |1 + x^2| + C
xxxiv] \int \mathrm{arcsec}\,x \,dx = x \,\mathrm{arcsec}\,x\ -\ \log_e |x + \sqrt{x^2 - 1}|\ +\ C
7. Definite Integrals
xxxv] \int_{-\infty}^{\infty}{e^{-x^2} \,dx} = \sqrt \pi
xxxvi] \int_0^{\infty} x^{n-1} e^{-x} \,dx = \Gamma(n)
xxxvii] \int_{-\infty}^{\infty}\frac{\sin x}{x} \,dx= \pi
xxxviii] \int_{-\infty}^{\infty}\frac{\sin^2{x}}{x^2} \,dx= \pi
* This entry is from our old Library feature. If you know who wrote it, please let us know so we can attribute a writer. Thanks!