What Determines the Maximum Area of an Athletic Field?

  • Thread starter Thread starter dmonlama
  • Start date Start date
  • Tags Tags
    Area Field
dmonlama
Messages
4
Reaction score
0

Homework Statement


An athletic field is to be built in the sahpe of a rectangle x units long capped by semicircular regions of radius r at the two ends. The field is to be bounded by a 400-m racetrack.
a. Express the area of the rectangular portion of the field as a funcion of x alone or r alone (your choice).
b. What values of x and r give the rectangular portion the largest possible area?


The Attempt at a Solution


For a, i expressed the equation in terms of r. I got 40000/pi - pi(r)^2. i just took the overall area and subtract it by the semicircular circles.
 
Physics news on Phys.org
What is your question? If you are asking if you did this correctly, I can't say because didn't show how you got that answer. Are you saying that the "overall area" is 4000/pi? How did you get that?
 
i got the 40000/pi - pi(r)^2 by getting the overall area and minus it by the semicircular circles that cap the rectangular part. that's the answer for a.
 
dmonlama said:
i got the 40000/pi - pi(r)^2 by getting the overall area and minus it by the semicircular circles that cap the rectangular part. that's the answer for a.

No, it's not. If r=0 that gives 40000/pi for the area, which can't be right. Again, show how you reached that conclusion.
 
HallsofIvy said:
What is your question? If you are asking if you did this correctly, I can't say because didn't show how you got that answer. Are you saying that the "overall area" is 4000/pi? How did you get that?

dmonlama said:
i got the 40000/pi - pi(r)^2 by getting the overall area and minus it by the semicircular circles that cap the rectangular part. that's the answer for a.
Now, please answer my original question. HOW did you get "the overall area"?
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top