What does find the dx/dy of (eq inside) for x>0 mean?

  • Thread starter Thread starter randy17
  • Start date Start date
  • Tags Tags
    Mean
randy17
Messages
4
Reaction score
0

Homework Statement



find dy/dx for the function xy^2+xlnx=4y for x>o

Homework Equations



xy^2+xlnx=4y

The Attempt at a Solution



I found the dy/dx to be "(y^2+lnx+1)/(4-x)=dx/dy"
What is it asking me to do with the x>0? Do they want me to plug in a value greater than 0 for x and solve for y? or what?
 
Last edited:
Physics news on Phys.org
The function ln, as you might know, isn't defined for values less than zero. Hence it is meaningless to speak of a function value, let alone a derivative there.

By the way, for this to make sense to me, you have to have an equal sign somewhere. Like xy^2+xlnx = 0 or something - else it's just a value, not anything to define a function y(x).
 
jeppetrost said:
By the way, for this to make sense to me, you have to have an equal sign somewhere. Like xy^2+xlnx = 0 or something - else it's just a value, not anything to define a function y(x).

Sorry, the eq is actually xy^2+xlnx=4y. Thank you for pointing out the mistake, I'll edit it out.
 
I get a slightly different answer. Check your derivative of the first term on the left.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top