What Does Stationarity Mean in the Context of the Euler-Lagrange Equations?

  • Thread starter Thread starter TheDoorsOfMe
  • Start date Start date
  • Tags Tags
    Euler-lagrange
TheDoorsOfMe
Messages
46
Reaction score
0
What does it mean when it says "the integral of the Lagrange equation is stationary for the path followed by the particle"?
 
Physics news on Phys.org
Is it just saying that the integral is a constant?
 
I would assume it means that the action s = \int Ldt is a stationary point (i.e. a min most likely as the action is minimised in real systems).

You might want to wait for some confirmation however as I haven't studied Lagrangian mechanics in too much depth.
 
A stationary point is a point where the derivative of a function is 0. To obtain the Euler-Lagrange equations we set the variation of the action to 0.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top