What Group Preserves the Invariance of E^2 - B^2 in Electromagnetic Fields?

Mentz114
Messages
5,429
Reaction score
292
I understand that E^2 - B^2 is invariant under various transformations.

If we consider the vector ( E, B ) as a column, then E^2 - B^2 is preserved after mutiplication by a matrix -

| cosh( v) i.sinh(v) |
| i.sinh(v) cosh(v) |

I think this transformation belongs to a group, but I can't put a name to it.
Does anyone recognise it ?

This matrix

1 i
i 1

also seems to preserve E^2-B^2 but is it a member of the preceeding ?
 
Physics news on Phys.org
If you look at what you are doing, this is the same as preserving the spacetime interval in 1+1 dimensions (t,x). So it's 'like' the lorentz group, though you've got complex entries and the one parameter family is not a group. Call it a subset of SU(1,1). The second matrix doesn't even preserve E^2-B^2.
 
Dick, thanks a lot.
I thought it might be a subset of 1+1 boosts.
I must have fumbled the calculation with the second matrix. Too much coffee...
 
Thanks again for naming the group. It is SU(1,1) in all its glory.
I had a lucky find which I've attached. It is a great intro to the group, see
especially section 6.1. I just noticed that the file is called SU12, that is an error,
it really is about SU(1,1).

M
 

Attachments

Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top