What Happens When a Slipping Sphere Begins to Roll Without Slipping?

AI Thread Summary
A uniform density sphere is released with an initial angular speed of 10 rev/sec and no linear velocity, slipping on a surface with a coefficient of friction of 0.21. The discussion focuses on determining the ball's rolling speed at time t, the time taken to reach that speed, and the energy lost due to friction. The equations for rotational inertia and kinetic energy are applied to analyze the motion, considering both translational and rotational dynamics. The kinetic friction accelerates the sphere's translation while decelerating its rotation until pure rolling without slipping occurs. The solution involves calculating linear and angular accelerations to find the conditions for rolling motion.
jbphys303
Messages
1
Reaction score
0

Homework Statement



A uniform density sphere is released such that it has an angular speed of 10 rev/sec and no initial linear velocity. The angular velocity vector is perfectly perpendicular to the linear momentum vector. Initially the ball slips as it moves along the surface, but after time t pure rolling without slipping begins.

The coefficient of friction between the sphere and the surface is 0.21.
The radius of the ball is 0.08m
mass sphere= 7.3 kg
w= 10 rev/sec

#1: How fast is the ball rolling at time t?

#2: How long did it take to reach this speed?

#3: How much energy was lost between time t=0 and t=t?


Homework Equations



Rotational Inertia (I)=2/5mr^2
kinetic energy (rotational)= 1/2Iw^2
ke= 1/2mv^2
v=rw



The Attempt at a Solution



I think I can figure it out once I know how much energy is lost by friction
So far I set up the following equation
1/2Iw^2-(energy lost by friction)= 1/2Iw(final)^2+ 1/2mv^2
Any help would be appreciated
 
Last edited:
Physics news on Phys.org
The motion of the ball is composed of translation of its CM and of rotation around the CM. The kinetic friction points forward, accelerates translation and its torque with respect to the CM decelerates rotation. At the time when v=rw, static friction takes place and the ball rolls.

Use both equation for linear acceleration ma = F and for angular acceleration I*dw/dt=-RF. Solve for v and w. Find the time when wR=v.

ehild
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top