B What Integral Transform is this?

  • B
  • Thread starter Thread starter batoulsy
  • Start date Start date
  • Tags Tags
    Integral Transform
batoulsy
Messages
1
Reaction score
0
What is the transformation used
Is there any explanation for :
$$
\frac{\mathit{\lambda}}{\mathit{\Gamma}{\mathrm{(}}{q}{\mathrm{)}}}\mathop{\int}\limits_{t0}\limits^{t}{{\mathrm{(}}{t}\mathrm{{-}}{s}{\mathrm{)}}^{{q}\mathrm{{-}}{1}}}{x}_{0}\mathrm{(}s\mathrm{)}ds
$$
How did become like this
$$
\frac{{x}_{0}\hspace{0.33em}\mathit{\lambda}}{\mathit{\Gamma}{\mathrm{(}}{q}{\mathrm{)}}\mathit{\Gamma}{\mathrm{(}}{q}{\mathrm{)}}}\mathop{\int}\limits_{0}\limits^{1}{{\mathrm{(}}{t}\mathrm{{-}}{t}_{0}}{\mathrm{)}}^{{2}{q}\mathrm{{-}}{1}}{\mathrm{(}}{1}\mathrm{{-}}\mathit{\sigma}{\mathrm{)}}^{{q}\mathrm{{-}}{1}}{\mathit{\sigma}}^{{q}\mathrm{{-}}{1}}{d}\mathit{\sigma}
$$
Where:
$$
{x}_{0}{\mathrm{(}}{t}{\mathrm{)}}\mathrm{{=}}\frac{{x}_{0}{\mathrm{(}}{t}\mathrm{{-}}{t}_{0}{\mathrm{)}}^{{q}\mathrm{{-}}{1}}}{\mathit{\Gamma}{\mathrm{(}}{q}{\mathrm{)}}}
$$
 
Physics news on Phys.org
Can you provide some context here? Where did you see this transformation and what were you studying?
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top