What is a Different Method for Implicit Differentiation?

Click For Summary
The discussion presents an alternative method for implicit differentiation using the equation x/y = t and substituting y = t^2, leading to the equation y^3 - x^2 = 0. The derivative dy/dx is derived as 2x/(3y^2), and at the point (-8, 4), the result is -1/3. The conversation emphasizes the potential simplification of problems by eliminating parametric coordinates, ultimately relating y back to x as y = x^(2/3). The method showcases a teaching demonstration for solving implicit differentiation problems effectively.
chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
Find the equation of the normal to a curve given parametric equations;

##x=t^3, y=t^2##
Relevant Equations
Parametric equations
This is a text book example- i noted that we may have a different way of doing it hence my post.

1674340180575.png


Alternative approach (using implicit differentiation);

##\dfrac{x}{y}=t##

on substituting on ##y=t^2##

we get,

##y^3-x^2=0##

##3y^2\dfrac{dy}{dx}-2x=0##

##\dfrac{dy}{dx}=\dfrac{2x}{3y^2}##

at points ##(-8,4)##

##\dfrac{dy}{dx}=\dfrac{-1}{3}##

...the rest of the steps to required solution will follow...

...any insight is welcome.
 
Last edited:
Physics news on Phys.org
Or \begin{split}<br /> \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} &amp;= \begin{pmatrix} t^3 \\ t^2 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 3t^2 \\ 2t \\ 0 \end{pmatrix} \times \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \\<br /> &amp;= \begin{pmatrix} t^3 \\ t^2 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 2t \\ -3t^2 \\ 0 \end{pmatrix}<br /> \end{split}<br /> and then <br /> \lambda = \frac{x - t^3}{2t} = \frac{y - t^2}{-3t^2}\quad\Rightarrow\quad<br /> y = t^2 - 3t^2\frac{x - t^3}{2t} = t^2 + \tfrac32 t^4 - \tfrac32 tx.
 
The book-solution is presumably given simply as a teaching-demonstration of how to solve this type of problem using parametric coordinates. But note, sometimes elimination of the parametric coordinates simplifies the problem. In this particular question(at the risk of stating the obvious):

##x=t^3, y= t^2 ⇒ y = x^{\frac 23}##

##\frac {dy}{dx} = \frac 23 x^{-\frac13}##

When ##x = -8, \frac {dy}{dx} = \frac 23 (-8)^{-\frac13}= -\frac 13##

etc.
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...