Phymath
- 183
- 0
two questions...
1) by a change of variable show the following...
\int^{\infty} _{-\infty} \frac{dt}{(a^2 + t^2)^{3/2}} = \frac{2}{a^2}\int^{\pi/2} _0 cos \ t \ dt
i'm thinking about changing this to polar cords and see where that take me anyone?
2) F(x) = \int^{cos \ x} _0 e^{xt^2} \ dt , \ G(x) = \int^{cos \ x} _0 t^2 e^{xt^2} \ dt, \ H(t) = G(x) - F'(x) express H(x) in elementry functions.
F'(x) = \frac{\partial cos \ x}{\partial x} e^{xt^2} - 0 + \int \frac{\partial}{\partial x} e^{xt^2} \ dt \\<br /> = -sin \ x \ e^{xt^2} + \int t^2e^{xt^2} \ dt
<br /> H(x) = \int^{cos \ x} _0 t^2 e^{xt^2} \ dt + sin \ x \ e^{xt^2} - \int t^2e^{xt^2} \ dt <br /> <br /> = sin \ x \ e^{xt^2}
Did i do the dirv correctly? and how do I show that H(\pi/4) = \frac{e^{\pi/8}}{\sqrt{2}}
1) by a change of variable show the following...
\int^{\infty} _{-\infty} \frac{dt}{(a^2 + t^2)^{3/2}} = \frac{2}{a^2}\int^{\pi/2} _0 cos \ t \ dt
i'm thinking about changing this to polar cords and see where that take me anyone?
2) F(x) = \int^{cos \ x} _0 e^{xt^2} \ dt , \ G(x) = \int^{cos \ x} _0 t^2 e^{xt^2} \ dt, \ H(t) = G(x) - F'(x) express H(x) in elementry functions.
F'(x) = \frac{\partial cos \ x}{\partial x} e^{xt^2} - 0 + \int \frac{\partial}{\partial x} e^{xt^2} \ dt \\<br /> = -sin \ x \ e^{xt^2} + \int t^2e^{xt^2} \ dt
<br /> H(x) = \int^{cos \ x} _0 t^2 e^{xt^2} \ dt + sin \ x \ e^{xt^2} - \int t^2e^{xt^2} \ dt <br /> <br /> = sin \ x \ e^{xt^2}
Did i do the dirv correctly? and how do I show that H(\pi/4) = \frac{e^{\pi/8}}{\sqrt{2}}
Last edited: