MisterX
- 758
- 71
Homework Statement
Homework Equations
\frac{\partial\mathcal{L} }{\partial \phi} = \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{\phi}}
The Attempt at a Solution
z = r\cos\alpha
s = r\sin\alpha
v^2 = \dot{r}^2 + r^2 \dot{\phi}^2 sin^2\alpha
\mathcal{L} = \frac{1}{2}m\dot{r}^2 + \frac{1}{2}mr^2 \dot{\phi}^2 sin^2\alpha- mgr\cos\alpha
\ell_z = I_z\omega_z = ms^2\dot{\phi}
\ell_z = mr^2\dot{\phi}\sin^2\alpha
The \phi Euler Lagrange equation is just conservation of angular momentum.
\frac{\partial\mathcal{L} }{\partial \phi} = 0 = \frac{d}{dt}\left(mr^2\dot{\phi}sin^2\alpha \right) = \dot{\ell_z} = \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{\phi}}
\dot{\ell_z} = m\sin^2(\alpha)(2r\dot{r}\dot{\phi} + mr^2\ddot{\phi}) = 0
the r Euler Lagrange equation
\frac{\partial\mathcal{L} }{\partial r} = mr\dot{\phi}^2\sin^2\alpha - mgcos\alpha = m\ddot{r} = \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{r}}
I'm not sure how to put this in terms of \ell_z in a way that gets rid of all the \dot{\phi} and r. There's that extra power of \dot{\phi}.