EngWiPy
- 1,361
- 61
Hello,
For two n-dimensional vectors \mathbf{v}_1\text{ and }\mathbf{v}_2, what is the Cauchy-Schwarz Inequality:
1- |\mathbf{v}_1.\mathbf{v}_2|\leq\|\mathbf{v}_1\|\|\mathbf{v}_2\|, or
2- |\mathbf{v}_1.\mathbf{v}_2|\leq\|\mathbf{v}_1\|+\|\mathbf{v}_2\|
In either case, the equality holds when \mathbf{v}_1=a\,\mathbf{v}_2, where a is a positive real constant. Is there any specific way to compute a, or just pick an arbitrary positive real number?
Regards
For two n-dimensional vectors \mathbf{v}_1\text{ and }\mathbf{v}_2, what is the Cauchy-Schwarz Inequality:
1- |\mathbf{v}_1.\mathbf{v}_2|\leq\|\mathbf{v}_1\|\|\mathbf{v}_2\|, or
2- |\mathbf{v}_1.\mathbf{v}_2|\leq\|\mathbf{v}_1\|+\|\mathbf{v}_2\|
In either case, the equality holds when \mathbf{v}_1=a\,\mathbf{v}_2, where a is a positive real constant. Is there any specific way to compute a, or just pick an arbitrary positive real number?
Regards