tweety1234
- 111
- 0
Homework Statement
\int \frac{3x}{2x+3}
u = 2x +3
x = \frac{1}{2}(u-3} )
dx = \frac{1}{2} du
so now the integral should be,
\int \frac{ \frac{3u-9}{2}}{u} \times \frac{1}{2} du
= \frac{1}{2} \int \frac{3u-9}{2} \times \frac{1}{u} du
\frac{1}{2} \int \frac{3u-9}{2u} du
\frac{1}{2} \int \frac{3u}{2u} - \frac{9}{2u}
\frac{1}{2} \int \frac{3}{2} - \frac{9}{2u}
= \frac{1}{2} [ \frac{3}{2}u - \frac{9}{2} ln(2u)]
so final answer, after simplifying is ; \frac{3}{2}x +\frac{9}{4} - \frac{9}{4}ln(4x+6) +c
but my book says the correct answer is \frac{3}{2}x - \frac{9}{4}ln(2x+3) +c
So if anyone can tell me where I have gone wrong, I would really appreciate it.
thanks