MHB What is the Definition of a Derivation for a Lie Algebra?

topsquark
Science Advisor
Homework Helper
Insights Author
MHB
Messages
2,020
Reaction score
843
Loosely speaking a derivation D is defined as a function on an algebra A that has the property D(ab) = (Da)b + a(Db).

Now, if we define the map [math]ad_x: y \mapsto [x,y] [/math] and apply this to the Jacobi identity we get [math]ad_x[y,z] = [ ad_x(y),z ] + [ y, ad_x(z) ] [/math]. This does not look quite like the definition of the derivation given above. It is considered a derivation because of the ordering inside the brackets? Or does is this simply the definition of a derivation for a Lie algebra?

Ooh! Wait a minute. The brackets are there because multiplication in the Lie algebra is given by [math] [,]: L \times L \mapsto L[/math]? (My notes are not clear that this is to represent multiplication.)

-Dan
 
Physics news on Phys.org
topsquark said:
Loosely speaking a derivation D is defined as a function on an algebra A that has the property D(ab) = (Da)b + a(Db).

Now, if we define the map [math]ad_x: y \mapsto [x,y] [/math] and apply this to the Jacobi identity we get [math]ad_x[y,z] = [ ad_x(y),z ] + [ y, ad_x(z) ] [/math]. This does not look quite like the definition of the derivation given above. It is considered a derivation because of the ordering inside the brackets? Or does is this simply the definition of a derivation for a Lie algebra?

Ooh! Wait a minute. The brackets are there because multiplication in the Lie algebra is given by [math] [,]: L \times L \mapsto L[/math]? (My notes are not clear that this is to represent multiplication.)

-Dan

Hi Dan,

It is common to use brackets to represent multiplication in a Lie algebra. The identity you have above for $ad_x$ shows that $ad_x$ is a derivation.

Here's something to keep in mind. Suppose $A$ is an associative algebra. Define $[x, y]$ to be the additive commutator $xy - yx$. Then $[x, x] = 0$ for all $x\in A$ and Jacobi's identity is satisfied with $[\, ,\,]$. So $[\, ,\,]$ is a Lie bracket on $A$, and $(A, [\, ,\,])$ is a Lie algebra. This gives a connection between associative algebras and Lie algebras.
 
Thank you for the reply. I didn't think of it until later but this explains the notations in some of the more arcane set of proofs in my QFT texts.

One further question. The definition of a Lie group on set L gives a multiplicative operation [math]m: L \times L \to L[/math]. Does this imply a unique form of [,] in the Lie algebra or can we have more than one Lie algebra corresponding to a given Lie group?

-Dan

Edit:
This gives a connection between associative algebras and Lie algebras.

There are non-associative algebras??
 
topsquark said:
Thank you for the reply. I didn't think of it until later but this explains the notations in some of the more arcane set of proofs in my QFT texts.

One further question. The definition of a Lie group on set L gives a multiplicative operation [math]m: L \times L \to L[/math].

What do you mean by a "Lie group on set L"?

topsquark said:
There are non-associative algebras??

Yes. Here's one that you'll be familiar with. Consider $\Bbb R^3$ with multiplication defined by the cross product. This defines an algebra over $\Bbb R$. Let $\textbf{u} = (2, 3, 1)$, $\textbf{v} = (1, 0, 2)$, and $\textbf{w} = (0, 0, 1)$. Then $\textbf{u} \times (\textbf{v} \times \textbf{w}) = (2, 3, 1) \times (0, -1, 0) = (1, 0, -2)$ and $(\textbf{u} \times \textbf{v}) \times \textbf{w} = (6,-3,-3) \times (0,0,1) = (-3,-6,0)$. Therefore, $\textbf{u} \times (\textbf{v} \times \textbf{w}) \neq (\textbf{u} \times \textbf{v}) \times \textbf{w}$. Geometrically speaking, the cross products $\textbf{u} \times (\textbf{v} \times \textbf{w})$ and $(\textbf{u} \times \textbf{v}) \times \textbf{w}$ lie in different planes in general, so they are usually not equal.

To every algebra $A$ there corresponds a (multilinear) ternary operation $[\cdot, \cdot, \cdot] : A \times A \times A \to A$, called the $\textit{associator}$, defined by $[x,y,z] = (xy)z - x(yz)$. Of course, the associator of $A$ is trivial if and only if $A$ is associative. Make sure not to assume algebras are associative in your texts unless mentioned otherwise.
 
Euge said:
What do you mean by a "Lie group on set L"?
Sorry. It was a badly worded question anyway but apparently I was so set on assuming that a Lie algebra was created from a Lie group that I didn't see that the definition says that a Lie algebra is created from a vector space. Please ignore the question.

-Dan
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...

Similar threads

Replies
15
Views
3K
Replies
5
Views
2K
Replies
19
Views
3K
Replies
4
Views
2K
Replies
3
Views
485
Replies
10
Views
2K
Back
Top