What is the definition of a rank 3 totally antisymmetric tensor?

  • Thread starter Thread starter ehrenfest
  • Start date Start date
  • Tags Tags
    Tensor
ehrenfest
Messages
2,001
Reaction score
1

Homework Statement


The totally antisymmetric rank 4 tensor is defined as 1 for an even combination of its indices and -1 for an odd combination of its indices and 0 otherwise.

Is a rank 3 totally antisymmetric tensor defined the same way?


Homework Equations





The Attempt at a Solution

 
Physics news on Phys.org
Mmmmmm. Yes! Do you think 4 is special?
 
The definition is the same, but remember that a cyclic permuation is even/odd iff the number of elements being permuted is odd/even. This sometimes causes confusion when moving moving from 3 to 4 dimensions.
 
Yes and no, I think the definition here is incomplete. It does not include what happens when you raise and lower an index. The rank 4 anti-symmetric tensor is a psuedotensor, the rank 3 one is a true tensor. So overall no.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top