What is the Derivation of Vector Calculus Equations?

srvs
Messages
31
Reaction score
0
Hi,

This is probably really simple but I can't figure out how they go from eq. 2 to eq. 3 here:
http://img179.imageshack.us/my.php?image=vcalc.jpg

First term I see, however the - mu / r I don't. Shouldn't this be + (1/2) mu / r?

Asked my professor but he said "just do the derivations". :(
 
Physics news on Phys.org
Your professor was right. Let's take the second term of the second equation first.

<br /> \frac{1}{2} \frac{\mu}{r^3}\frac{d (\vec{r} \cdot \vec{r})}{dt}=\frac{1}{2} \frac{\mu}{r^3}\frac{d r^2}{dt}=\frac{1}{2}\frac{\mu}{r^3} 2 r \frac{dr}{dt}=\frac{\mu}{r^2}\frac{dr}{dt}<br />

Now the second term of the third equation.

<br /> \frac{d}{dt}\frac{-\mu}{r}=\frac{-1}{r^2}\frac{d-\mu r}{dt}=\frac{\mu}{r^2}\frac{dr}{dt}<br />
 
\frac{1}{2} \frac{\mu}{r^3} \frac{d}{dt}r\cdot r = \frac{1}{2} \frac{\mu}{r^3} \frac{d}{dt}r^2 = \frac{1}{2} \frac{\mu}{r^3} 2r \frac{dr}{dt} = \frac{\mu}{r^2}\frac{dr}{dt} = -\mu \frac{dr^{-1}}{dt} = \frac{d}{dt} \frac{-\mu}{r}

EDIT: Cyosis beat me to it!
 
Last edited:
Shame on me. Thank you.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top