What is the derivative of X^(x^x)?

  • Thread starter Thread starter appplejack
  • Start date Start date
  • Tags Tags
    Derivative
appplejack
Messages
43
Reaction score
0

Homework Statement


I uploaded a image file of the question.


Homework Equations


I've seen the derivative of X^x but how do I do this one?


The Attempt at a Solution

 

Attachments

  • 1111.jpg
    1111.jpg
    1.4 KB · Views: 357
Physics news on Phys.org
Put t=xx and apply the chain rule since you know what d/dx(xsup]x[/sup]) gives.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top