What is the difference between a perfect gas and an ideal gas?

  • #1
What is difference between perfect gas and ideal gas?
 

Answers and Replies

  • #2
Lord Jestocost
Gold Member
685
483
According to Atkins’ “Physical Chemistry”: A gas that obeys pV = nRT exactly under all conditions is called a perfect gas (or ideal gas).
 
  • #3
DrClaude
Mentor
7,554
3,894
There is a difference between usage in physics and in engineering. While physicists often use both terms interchangeably, this is not the case for engineers.

@Chestermiller can fill in the details better than me.
 
  • #4
There is a difference between usage in physics and in engineering. While physicists often use both terms interchangeably, this is not the case for engineers.


@Chestermiller can fill in the details better than me.
I want to know about it used in engineering
 
  • #5
20,875
4,547
In Chemical Engineering, we regard an ideal gas as the limiting behavior of a real gas at very low density. As such,

1. At thermodynamic equilibrium, ##pV=nRT##

2. In a system not at equilibrium (experiencing an irreversible process), the gas satisfies the ideal gas equation pv=RT locally, where v is the specific molar volume. The pressure, specific volume, and temperature may be varying with spatial position and time.

3. The specific internal energy and specific enthalpy are functions only of temperature (and approach those of the real gas at very low density)

4. The heat capacity at constant volume and the heat capacity at constant pressure are functions of temperature, but do not depend on pressure.

5. The viscosity and thermal conductivity are functions of temperature but not pressure.

6. The entropy includes the effect of temperature on heat capacity.
 
  • Like
Likes davenn, vanhees71 and berkeman
  • #6
Lord Jestocost
Gold Member
685
483
For a gas whose equation of state is exactly given by ##pV = nRT##, the specific internal energy depends only on temperature. Thus, if definition (1.) holds, definition (3.) is redundant.
 
  • #7
20,875
4,547
For a gas whose equation of state is exactly given by ##pV = nRT##, the specific internal energy depends only on temperature. Thus, if definition (1.) holds, definition (3.) is redundant.
Yes, that's correct. And I considered not including #3, but, for a neophyte to thermodynamics, I felt it would helpful to include.
 
  • Like
Likes Lord Jestocost
  • #8
I haven't got the difference between ideal gas and perfect gas?
 
  • #9
20,875
4,547
I haven't got the difference between ideal gas and perfect gas?
We're still waiting for a Physicist to respond with their version of an ideal gas and perfect gas. We engineers use ideal gas and perfect gas interchangeably. Anyway, you said you were more interested in the engineering definition (which I gave).
 
  • #10
We're still waiting for a Physicist to respond with their version of an ideal gas and perfect gas. We engineers use ideal gas and perfect gas interchangeably. Anyway, you said you were more interested in the engineering definition (which I gave).
You have given the characterstics of ideal gas, they are true but I needed how can we differentiate between ideal and perfect gas?
I know one of the difference, it is that in ideal gases specific heat vary with temperature but in perfect gas specific heat is constant. I wanted to know more about it.
 
  • #11
20,875
4,547
You have given the characterstics of ideal gas, they are true but I needed how can we differentiate between ideal and perfect gas?
I know one of the difference, it is that in ideal gases specific heat vary with temperature but in perfect gas specific heat is constant. I wanted to know more about it.
Like I said, I'll leave it up to Physicists to provide their version of things. You have our answer from us engineers.
 
  • Like
Likes davenn
  • #12
vanhees71
Science Advisor
Insights Author
Gold Member
17,077
8,180
Indeed, at least in my community (relativistic heavy-ion physics, which uses relativistic statistical physics, including transport theory, thermal QFT, hydrodynamics, as one of its most important tools), there's no difference made between a "perfect" and an "ideal" gas. In fact, the expression "perfect gas" is never used.

From point of view of kinetic theory, one can define an ideal gas as a gas whose consituent particles have a mean free path which is much shorter than the typical space-time scales upon which the macroscopic properties of the gas changes. This implies equilibration (or relaxation) times much shorther than the typical timescales for changes of the macroscopic properties. Then the motion of the gas can be described well with ideal hydrodynamics, which implies that the gas is, on the resolution of macroscopic space-time scales, always in local thermal equilibrium.
 
  • #13
Indeed, at least in my community (relativistic heavy-ion physics, which uses relativistic statistical physics, including transport theory, thermal QFT, hydrodynamics, as one of its most important tools), there's no difference made between a "perfect" and an "ideal" gas. In fact, the expression "perfect gas" is never used.

From point of view of kinetic theory, one can define an ideal gas as a gas whose consituent particles have a mean free path which is much shorter than the typical space-time scales upon which the macroscopic properties of the gas changes. This implies equilibration (or relaxation) times much shorther than the typical timescales for changes of the macroscopic properties. Then the motion of the gas can be described well with ideal hydrodynamics, which implies that the gas is, on the resolution of macroscopic space-time scales, always in local thermal equilibrium.
IMG-20181002-WA0010.jpg

I am confused after reading. I don't know what it is trying to say.
 

Attachments

  • #14
20,875
4,547
Indeed, at least in my community (relativistic heavy-ion physics, which uses relativistic statistical physics, including transport theory, thermal QFT, hydrodynamics, as one of its most important tools), there's no difference made between a "perfect" and an "ideal" gas. In fact, the expression "perfect gas" is never used.

From point of view of kinetic theory, one can define an ideal gas as a gas whose consituent particles have a mean free path which is much shorter than the typical space-time scales upon which the macroscopic properties of the gas changes. This implies equilibration (or relaxation) times much shorther than the typical timescales for changes of the macroscopic properties. Then the motion of the gas can be described well with ideal hydrodynamics, which implies that the gas is, on the resolution of macroscopic space-time scales, always in local thermal equilibrium.
Yikes. This is the same as what we engineers assume.
 
  • #16
According to the author your book, he defines a perfect gas as an ideal gas with constant heat capacity.
Now I am more confused. What is perfect gas?
 
  • #17
20,875
4,547
Now I am more confused. What is perfect gas?
I don't know how I can say this more precisely. Sorry. My advise is to not obsess over the difference, and to continue on with your learning.
 
  • Like
Likes vanhees71
  • #18
I don't know how I can say this more precisely. Sorry. My advise is to not obsess over the difference, and to continue on with your learning.
Ok, thanks any way for your tine
 
  • #19
Lord Jestocost
Gold Member
685
483
Now I am more confused. What is perfect gas?
In Chapter III “SYSTEMS OF ONE COMPONENT” of the book “MODERN THERMODYNAMICS BY THE METHODS OF WILLARD GIBBS” by E. A. Guggenheim one finds:

Finally, let us consider a substance with the property that both its energy and its heat content are functions of the temperature only. A substance with this property is called a "perfect gas." For such a substance it then follows immediately from (21) [ H = E + PV ] that the product PV is a function of the temperature only, that is to say

for given T, PV = constant. (196-1)
 

Related Threads on What is the difference between a perfect gas and an ideal gas?

  • Last Post
Replies
2
Views
3K
  • Last Post
Replies
3
Views
2K
  • Last Post
Replies
1
Views
1K
Replies
14
Views
501
  • Last Post
Replies
4
Views
4K
Replies
6
Views
2K
  • Last Post
Replies
15
Views
10K
  • Last Post
Replies
2
Views
816
  • Last Post
Replies
6
Views
4K
  • Last Post
Replies
14
Views
3K
Top