What is the dimension of eigenspaces in a function-based linear transformation?

  • Thread starter Thread starter Tala.S
  • Start date Start date
  • Tags Tags
    Dimension
Tala.S
Messages
43
Reaction score
0
Linear transformation f:C^∞(R) -> C^∞(R)

f(x(t)) = x'(t) a) I have to set up the eigenvalue-problem and solve it :

My solution : ke^λtb) Now I have to find the dimension of the single eigen spaces when λ is

-5 and 0. My solution :

Eigenspaces :

E-5 = ke^-5t

E0=k (because ke^0t = k)

But I don't know how to find the dimension of the single eigen spaces ?

I'm used to working with vectors but now it's functions and I'm not sure about the dimension.
 
Last edited:
Physics news on Phys.org


Solved !
 
Good! I presume that you realized that since every solution, Ce^{\lambda x} is a constant, C, times the single function e^{\lambda x}, the space is one dimensional.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top