What Is the Distance Between Adjacent Nodes in Superimposed Waves?

  • Thread starter Thread starter vivekfan
  • Start date Start date
  • Tags Tags
    Properties
AI Thread Summary
Adjacent nodes in superimposed waves are separated by half a wavelength, which is derived from the properties of standing waves formed by the interference of two traveling waves. The nodes occur at points where the amplitude is zero, corresponding to specific values of the sine function. For the second question, the distance from the second node to the fifth node is 60 cm, indicating that the distance between nodes is 20 cm, which allows for the calculation of the wavelength. The wavelength of the original waves can be determined using the relationship lambda = 2 * distance between nodes. The combined wave retains the same wavelength as the original waves, confirming that the distance between adjacent nodes remains consistent.
vivekfan
Messages
34
Reaction score
0

Homework Statement



1)Two Traveling Waves y1=Asin[k(x-ct)] and y2=Asin[k(x-ct)] are superimposed on the same string. What is the distance between adjacent nodes?

2) Standing Waves are produced by the interference of two traveling sinusoidal waves, each of frequency 100 Hz. The distance from the second node to the fifth node is 60 cm. What is the wavelength of the original waves?


Homework Equations


y(x,t)= ymax sin (kx-wt), where w=omega

For the combined wave:

y(x,t)=[2ymax sin kx]cos wt, where w=omega


The Attempt at a Solution



For the first question, I read in my book that adjacent nodes are separated by half a wavelength, but I'm not sure why this is true, and also what is the wavelength in the combined wave in this question? Please help.

For the second question, I know that you find the nodes by equating sin kx to zero, but I'm confused about incorporating the distances?
 
Physics news on Phys.org
vivekfan said:

Homework Statement



1)Two Traveling Waves y1=Asin[k(x-ct)] and y2=Asin[k(x-ct)] are superimposed on the same string. What is the distance between adjacent nodes?

2) Standing Waves are produced by the interference of two traveling sinusoidal waves, each of frequency 100 Hz. The distance from the second node to the fifth node is 60 cm. What is the wavelength of the original waves?

I think you ment y1=Asin[k(x-ct)] and y2=Asin[k(x+ct)] because these 2 wave will produce a standing wave once superimposed and this standing wave will have nodes at every half wavelengh. So a node is defined as a fixed point when the amplitude of the wave is 0. Its easy to see if you think about a graph of y=sin(x), This graph will look like the standing wave at any instant in time. So y=0 at x=0, \pi/2 and \pi, the difference between each point is half a wavelenght.
 
Easty said:
I think you ment y1=Asin[k(x-ct)] and y2=Asin[k(x+ct)] because these 2 wave will produce a standing wave once superimposed and this standing wave will have nodes at every half wavelengh. So a node is defined as a fixed point when the amplitude of the wave is 0. Its easy to see if you think about a graph of y=sin(x), This graph will look like the standing wave at any instant in time. So y=0 at x=0, \pi/2 and \pi, the difference between each point is half a wavelenght.

How do you know what the wavelength of the resulting wave is?
 
The wavelenght of each inital wave is the same, so once superimposed the new wave will have the same wavelenght, which will be given by ( lambda= 2*pi/k)

So each node will be located at Lambda=pi/k
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top