What is the force on a poppet valve due to expanding air?

  • Thread starter Thread starter tommy101
  • Start date Start date
  • Tags Tags
    Forces Valve
AI Thread Summary
The discussion focuses on calculating the force on a poppet valve due to expanding air when it opens against a spring force. Initially, the force on the valve is equal to the spring force, but as the air expands, the pressure (P1) decreases, leading to a reduction in the force exerted by the fluid (Ffluid). This dynamic means that the valve will close when the pressure force is less than the spring force required to keep it open. The conversation highlights the impact of fluid velocity on pressure across the poppet, referencing Bernoulli's principle, which results in decreased force with increased flow. Adjustments to valve geometry and the use of relief valves can enhance the pressure force on the poppet, affecting its operation.
tommy101
Messages
2
Reaction score
0
I need help with the following problem. I have attached a rough sketch showing what I'm looking at. Basically a popppet valve is closed over a vent. It is then pushed open by a force applied to the valve by the pushing rod. Their is a spring on the rod resisting this and providing a force labeled Fspring. The air inside the container at P1 is then expanding from rest through the valve to Pa (atmospheric). What i am trying to work out, and can't find a formula anywhere for, is what the force on the poppet valve will be due to the expanding air (Ffluid). I'm trying to model this system and currently the valve won't stay open as i can't compute the force on the poppet valve accuratley.
 

Attachments

Engineering news on Phys.org
The spring force, equal and opposite.
 
Cyrus said:
The spring force, equal and opposite.

Yes it will be when the valve initially opens. But the pressure in the bag (P1) then decreases, the mass flow through the poppet will decrease, so the force on the poppet will decrease. Thats what I'm trying to work out. I need to know the force on the poppet to work out when the valve closes again.
 
The valve will close when the pressure force is less than the force needed to deflect the spring.
 
In designs like you show, the velocity of the fluid increases as it aproaches the curtain area, so the pressure across the face of the poppet drops (think Bernoulli's principal) even though you may not measure a decrease in pressure directly upstream of the poppet. The result is the force on the poppet will decrease with increased flow.

Things can be done to change this. Relief valves for example, have a 'huddling chamber' downstream of the curtain area which effectively increases the area, resulting in a higher force on the poppet from the fluid which pops the valve open (even though the spring load also increases per k*dx). Similarly, adjusting poppet and valve geometry can provide different pressure forces on the poppet as the valve opens. Careful control of the geometry can change the pressure load as a function of lift.
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Back
Top