What is the Fourier Cosine Integral Identity for Deriving B* and A(w)?

madah12
Messages
326
Reaction score
1

Homework Statement


show that
xf(x)=integral from 0 to infinity of [B*(w)sin(wx)]dw , // B* is a function not B * w

where B* = -dA/dw
A(w) = 2/pi integral from 0 to infinity [f(v) cos(wv)] dv

Homework Equations

f(x)=integral from 0 to infinity [A(w)cos(wx)] dw

The Attempt at a Solution



working on right hand side
B*= 2/pi * integral from 0 to infinity [vf(v)cos(wv)dv]
=integral from 0 to infinity of [2/pi * integral from 0 to infinity [vf(v)cos(wv)dv]sin(wx)]dw
left side = integral from 0 to infinity [ A(w)xcos(wx)]dw

Even when i tried writing A as integral i don't see how do i prove 2 sides which have 2 integrals in them equal each other?
 
Physics news on Phys.org
>_> I know I didn't do a lot of work but there is not much to work on from the book and I don't really know how to algebriacly manipulate integrals of the form g(x) = integral from 0 to infinity f(x,y)dy
 
should I repost this in engineering section?
 
those are pictures of the problem if it's not clear ><

(20)(a2)
 

Attachments

  • problem.jpg
    problem.jpg
    42.4 KB · Views: 439
  • problem 2.jpg
    problem 2.jpg
    37.5 KB · Views: 449
Last edited:
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top