What Is the Initial Speed of a Block Given Friction and Distance?

AI Thread Summary
To find the initial speed of a block traveling 10m on a horizontal surface with a coefficient of friction (μ) of 0.40, the work-energy principle is applied. The equations of motion and friction force are relevant, where the friction force (f) is calculated as f = μ * N, and N is the normal force. The total work done against friction must equal the change in kinetic energy as the block comes to a stop. The discussion highlights the need for additional equations to solve for the initial speed, particularly relating acceleration and friction. The conversation emphasizes using the correct relationships between forces and motion to derive the solution.
schyuler2
Messages
8
Reaction score
0

Homework Statement


Find the initial speed of a block which travels 10m along a horizontal surface if \mu= 0.40 between the block and the surface before stopping.


Homework Equations


\SigmaW = 1/2mvB2 - 1/2mvA2 + mgyB - mgyA

\SigmaW = W * dAB * cos (W, dAB)

f = \mu* N
N= mgsin\theta

The Attempt at a Solution


so far i have:
\SigmaW = 0
\SigmaW = WN + WW + Wf

and

\SigmaW = WW * dAB * cos (270)
\SigmaW = WW * 10m * 0


not sure if I'm doing this right or where to go from here
 
Physics news on Phys.org
This problem requires an equation that you haven't included yet.

So we'll start with:
\SigmaF = max
\SigmaF = Px + fx + Nx + Wx
max = Px + fx+ Nx + Wx

\mu = -a / g
Try to solve it from here.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top