What is the Inverse Laplace Transform for V(s)=\frac{2s}{(s^{2}+4)^{2}}?

photonsquared
Messages
15
Reaction score
0
1. Find v(t) if V(s)=\frac{2s}{(s^{2}+4)^{2}}

Ans: v(t)=\frac{1}{2}tsin2tu(t)

2. Homework Equations :

V(s)=\frac{a_{n}}{(s-p)^{n}}+\frac{a_{n-1}}{(s-p)^{n-1}}+\cdots+\frac{a_{1}}{(s-p)}
a_{n-k}=\frac{1}{k!}\frac{d^{k}}{ds^{k}}[(s-p)^{n}V(s)]_{s=p}

3. Attempt at a solution:

V(s)=\frac{2s}{(s^{2}+4)^{2}}

V(s)=\frac{2s}{(s^{2}+4)^{2}}=\frac{A}{(s^{2}+4)^{2}}+\frac{B}{(s^{2}+4)}

A=\left[2s-B(s^{2}+4)\right]_{s=2i}

A=4i

B=\frac{d}{ds}\left[2s-B(s^{2}+4)\right]_{s=2i}

B=2

V(s)=\frac{4i}{(s^{2}+4)^{2}}+\frac{2}{(s^{2}+4)}

I am not sure what to do with the imaginary term, but it does not translate to 1/2t, which is what is required for the answer.

?+sin2tu(t)






 
Physics news on Phys.org
photonsquared said:
1. Find v(t) if V(s)=\frac{2s}{(s^{2}+4)^{2}}

Ans: v(t)=\frac{1}{2}tsin2tu(t)

2. Homework Equations :

V(s)=\frac{a_{n}}{(s-p)^{n}}+\frac{a_{n-1}}{(s-p)^{n-1}}+\cdots+\frac{a_{1}}{(s-p)}
a_{n-k}=\frac{1}{k!}\frac{d^{k}}{ds^{k}}[(s-p)^{n}V(s)]_{s=p}

3. Attempt at a solution:

V(s)=\frac{2s}{(s^{2}+4)^{2}}

V(s)=\frac{2s}{(s^{2}+4)^{2}}=\frac{A}{(s^{2}+4)^{2}}+\frac{B}{(s^{2}+4)}
No. Since the denominator, s^2+ 4 is quadratic you need
\frac{2s}{(s^2+4)^2}= \frac{Ax+ B}{(x^2+4)^2}+ \frac{Cx+ D}{x^2+4}
 
Thanks, I'll attempt again.
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top