What is the issue with the polar acceleration problem?

Kaguro
Messages
221
Reaction score
57
Homework Statement
A particle moves on a plane with rθ = constant. It's transverse acceleration is zero. Force acting on it is related to r as:
(a)1/r
(b)1/r^2
(c) 1/r^3
(d) 1/r^4
Relevant Equations
## \dot {\hat {r} }=\dot θ \hat {\theta}##

## \dot {\hat \theta }=-\dot {\theta} \hat r##
##\vec r=r \hat r##
##\vec v=\dot r \hat r + r \dot \theta \hat \theta##
##\vec a = (\ddot r - r \dot \theta^2)\hat r + (2 \dot r \dot \theta + r \ddot \theta)\hat \theta##
Given that,
##2 \dot r \dot \theta + r \ddot \theta =0##

Also,
##r \theta=constant##
##\Rightarrow \dot r \theta + r \dot \theta=0##
##\Rightarrow \dot r = -\frac{r \dot \theta} {\theta}##
##\Rightarrow \frac{-2r \dot \theta^2}{\theta} + r \ddot \theta=0##
##\Rightarrow \frac{2 \dot \theta^2}{\theta} = \ddot \theta##
##\Rightarrow 2 \dot \theta^2=\theta \ddot \theta##
##\Rightarrow \vec a=(\ddot r-r \dot\theta^2) \hat r##
##\Rightarrow \vec a=(\ddot r-\frac{r \theta\ddot \theta}{2}) \hat r##
##\Rightarrow \vec a=(\ddot r-\frac{(const.)\ddot \theta}{2}) \hat r##

Which is independent of r.
What is wrong with my work?
 
Physics news on Phys.org
Kaguro said:
Homework Statement:: A particle moves on a plane with rθ = constant. It's transverse acceleration is zero. Force acting on it is related to r as:
(a)1/r
(b)1/r^2
(c) 1/r^3
(d) 1/r^4
Relevant Equations:: ## \dot {\hat {r} }=\dot θ \hat {\theta}##

## \dot {\hat \theta }=-\dot {\theta} \hat r##

##\vec r=r \hat r##
##\vec v=\dot r \hat r + r \dot \theta \hat \theta##
##\vec a = (\ddot r - r \dot \theta^2)\hat r + (2 \dot r \dot \theta + r \ddot \theta)\hat \theta##
Given that,
##2 \dot r \dot \theta + r \ddot \theta =0##

Also,
##r \theta=constant##
##\Rightarrow \dot r \theta + r \dot \theta=0##
##\Rightarrow \dot r = -\frac{r \dot \theta} {\theta}##
##\Rightarrow \frac{-2r \dot \theta^2}{\theta} + r \ddot \theta=0##
##\Rightarrow \frac{2 \dot \theta^2}{\theta} = \ddot \theta##
##\Rightarrow 2 \dot \theta^2=\theta \ddot \theta##
##\Rightarrow \vec a=(\ddot r-r \dot\theta^2) \hat r##
##\Rightarrow \vec a=(\ddot r-\frac{r \theta\ddot \theta}{2}) \hat r##
##\Rightarrow \vec a=(\ddot r-\frac{(const.)\ddot \theta}{2}) \hat r##

Which is independent of r.
What is wrong with my work?

Why is this independent of ##r## when you haven't solved for ##\ddot r## or ##\ddot \theta##?
 
Wow! It's so difficult to know when to stop manipulating the equations...
##\vec a=(\ddot r - r \theta \ddot \theta/2) \hat r##
Now, ##r \theta=## const.
##r\dot \theta + \theta \dot r=0##
##r\ddot \theta +2\dot r \dot \theta + \theta \ddot r=0##
So, ##\ddot r = \frac{-2 \dot r \dot \theta - r \ddot \theta}{\theta}##

Also, since tangential part of acceleration is zero,
##\ddot \theta=\frac{-2\dot r \dot \theta}{r}##
So,
##\ddot r=\frac{-2\dot r \dot \theta+ 2 \dot r \dot \theta}{\theta}=0##
##\vec a=-const \ddot \theta \hat r = const \frac{ \dot r \dot \theta \hat r} {r}##

So, (a) is correct:biggrin:

Writing Latex is hard...
Thanks for help!
 
Kaguro said:
Wow! It's so difficult to know when to stop manipulating the equations...
##\vec a=(\ddot r - r \theta \ddot \theta/2) \hat r##
Now, ##r \theta=## const.
##r\dot \theta + \theta \dot r=0##
##r\ddot \theta +2\dot r \dot \theta + \theta \ddot r=0##
So, ##\ddot r = \frac{-2 \dot r \dot \theta - r \ddot \theta}{\theta}##

Also, since tangential part of acceleration is zero,
##\ddot \theta=\frac{-2\dot r \dot \theta}{r}##
So,
##\ddot r=\frac{-2\dot r \dot \theta+ 2 \dot r \dot \theta}{\theta}=0##
##\vec a=-const \ddot \theta \hat r = const \frac{ \dot r \dot \theta \hat r} {r}##

So, (a) is correct:biggrin:

Writing Latex is hard...
Thanks for help!
You still have ##\dot \theta## in that answer!
 
PeroK said:
You still have ##\dot \theta## in that answer!
Oh no...

So I used ##\dot \theta r +\theta \dot r=0##
To get
##\vec a = \frac{-\dot r^2 \theta}{r^2}\hat r##
And so
##\vec a = \frac{-\dot r^2 const}{r^3} \hat r##

So option C is correct?

And also, why leave answer in ##\dot r##?
I could convert it in terms of ##\dot \theta## and have only r in numerator.

How do you know which one to choose?
 
Kaguro said:
Oh no...

So I used ##\dot \theta r +\theta \dot r=0##
To get
##\vec a = \frac{-\dot r^2 \theta}{r^2}\hat r##
And so
##\vec a = \frac{-\dot r^2 const}{r^3} \hat r##

So option C is correct?

And also, why leave answer in ##\dot r##?
I could convert it in terms of ##\dot \theta## and have only r in numerator.

How do you know which one to choose?
You already showed that ##\ddot r = 0##, so ##\dot r## is constant.
 
  • Like
Likes Kaguro
😶
Wow...
You're great!:bow:
 
  • Like
Likes PeroK
I take issue with the selection of answers provided in the problem statement. Allow me to offer my analysis of this problem using Lagrangian dynamics. The Lagrangian for the system is$$
\begin{align*}
\mathcal{L}=\frac{1}{2}mv^2-V(r,\theta)\\
v^2=\dot{x}^2+\dot{y}^2
\end{align*}$$
where m is the mass of the particle, ##v## is the velocity and ##V(r,\theta)## is the potential energy. In our two dimensional Cartesian coordinate system,$$
\begin{align*}
x=r\cos(\theta)\\
y=r\sin(\theta)\\
\dot{x}=\dot{r}\cos(\theta)-r\dot{\theta}sin(\theta)\\
\dot{y}=\dot{r}\sin(\theta)+r\dot{\theta}sin(\theta)\\
v^2=\dot{r}^2+r^2\dot{\theta}^2
\end{align*}$$
and the Lagrangian becomes,$$
\mathcal{L}=\frac{1}{2}m(\dot{r}^2+r^2\dot{\theta}^2)-V(r,\theta)
$$with the prescription,$$
\begin{align*}
\frac{d}{dt}\frac{\partial{\mathcal{L}}}{\partial{\dot{r}}}=\frac{\partial{\mathcal{L}}}{\partial{r}}\\
\frac{d}{dt}\frac{\partial{\mathcal{L}}}{\partial{\dot{\theta}}}=\frac{\partial{\mathcal{L}}}{\partial{\theta}}
\end{align*}$$
we get the following equations,$$
\begin{align*}

m(\ddot{r}-r\dot{\theta}^2)=-\frac{\partial{V(r,\theta)}}{\partial{r}}=F_r\\
mr^2\ddot{\theta}^2=-\frac{\partial{V(r,\theta)}}{\partial{\theta}}=F_{\theta}=0
\end{align*}$$From the problem statement,$$
\theta=\frac{c}{r}$$ where ##c## is a constant and thus,$$
\begin{align*}
\dot{\theta}=\frac{-c\dot{r}}{r^2}\\
\ddot{\theta}=2c\frac{\dot{r}^2}{r^3}-\frac{c\ddot{r}}{r^2}=0\\
\ddot{r}=2\frac{\dot{r}^2}{r}=\dot{r}\frac{d\dot{r}}{dr}\\
\int_{\dot{r}_0}^{\dot{r}_f}\frac{d\dot{r}}{\dot{r}}=2\int_{r_0}^{r_f}\frac{dr}{r}
\end{align*}$$and thus,
$$
\begin{align*}
\dot{r}=br\\
b=2\frac{\dot{r}_0}{r_0}\\
\ddot{r}=b\dot{r}=b^2r
\end{align*}$$
Plugging the result into the formula for ##F_r## we get,$$
F_r=mb^2r(1-\frac{2c^2}{r^2})$$
 
Last edited:
  • Skeptical
Likes PeroK
Fred Wright said:
we get the following equations,$$
\begin{align*}

m(\ddot{r}-r\dot{\theta}^2)=-\frac{\partial{V(r,\theta)}}{\partial{r}}=F_r\\
mr^2\ddot{\theta}^2=-\frac{\partial{V(r,\theta)}}{\partial{\theta}}=F_{\theta}=0
\end{align*}$$

You should check that second equation. It's missing the term ##2m \dot r \dot \theta##.
 
  • #10
PeroK said:
You should check that second equation. It's missing the term ##2m \dot r \dot \theta##.
Your right PeroK! It should read,$$
mr^2\ddot{\theta}+ 2mr\dot{r}\dot{\theta}=-\frac{\partial{V(r,\theta)}}{\partial{\theta}}=F_{\theta}=0$$which gives,$$
\ddot{\theta}=-2\frac{\dot{r}\dot{\theta}}{r}$$We also have,$$
\begin {align*}
\theta=\frac{c}{r}\\
\dot{\theta}=\frac{-c\dot{r}}{r^2}\\
\ddot{\theta}=\frac{2c\dot{r}^2}{r^3}-\frac{c\ddot{r}}{r^2}
\end {align*}$$and thus$$
\begin {align*}
\ddot{\theta}=-2\frac{\dot{r}\dot{\theta}}{r}=-2\frac{\dot{r}}{r}\frac{c\dot{r}}{r^2}=\frac{2c\dot{r}^2}{r^3}-\frac{c\ddot{r}}{r^2}\\
4\frac{c\dot{r}^2}{r^3}=\frac{c\ddot{r}}{r^2}\\
\frac{4}{r}=\frac{\ddot{r}}{\dot{r}^2}\\
\ddot{r}=\dot{r}\frac{d\dot{r}}{dr}\\
4\int_{r_0}^{r_f}\frac{dr}{r}=\int_{\dot{r}_0}^{\dot{r}_f}\frac{d\dot{r}}{\dot{r}}\\
\dot{r}= br^4\\
b=\frac{r_0^4}{\dot{r}_0}
\end {align*}$$
Plugging into ##F_r##$$
F_r=m(\ddot{r}-r\dot{\theta}^2)=4mb^2r^7(1-\frac{c^2}{r^2})$$
I think I got it right this time...whatever...I found this problem interesting.
 
  • Skeptical
Likes PeroK
  • #11
That looks worse!
 
  • #12
Fred Wright said:
Your right PeroK! It should read,$$
mr^2\ddot{\theta}+ 2mr\dot{r}\dot{\theta}=-\frac{\partial{V(r,\theta)}}{\partial{\theta}}=F_{\theta}=0$$which gives,$$
\ddot{\theta}=-2\frac{\dot{r}\dot{\theta}}{r}$$We also have,$$
\begin {align*}
\theta=\frac{c}{r}\\
\dot{\theta}=\frac{-c\dot{r}}{r^2}\\
\ddot{\theta}=\frac{2c\dot{r}^2}{r^3}-\frac{c\ddot{r}}{r^2}
\end {align*}$$and thus$$
\begin {align*}
\ddot{\theta}=-2\frac{\dot{r}\dot{\theta}}{r}=-2\frac{\dot{r}}{r}\frac{c\dot{r}}{r^2}=\frac{2c\dot{r}^2}{r^3}-\frac{c\ddot{r}}{r^2}
\end{align*}
$$

You have made a sign error: from <br /> r^2 \ddot \theta + 2r \dot r \dot \theta = 0 you obtain <br /> \ddot \theta = - 2\frac{ \dot r \dot \theta}{r}. Substituting \dot \theta = -C\dot r/ r^2 you should have obtained <br /> \ddot \theta = \frac{2C \dot r^2}{r^3}. You, however, have an additional minus sign here.

With the correct sign, comparing with \ddot \theta = \frac{d}{dt}(-C\dot r /r^2) you should conclude <br /> \frac{2C\dot r ^2}{r^3} = -\frac{C\ddot r}{r^2} + \frac{2C \dot r ^2}{r^3} and thus <br /> 0 = \frac{C\ddot r}{r^2}.

$$\begin{align*}
4\frac{c\dot{r}^2}{r^3}=\frac{c\ddot{r}}{r^2}\\
\frac{4}{r}=\frac{\ddot{r}}{\dot{r}^2}\\
\ddot{r}=\dot{r}\frac{d\dot{r}}{dr}\\
4\int_{r_0}^{r_f}\frac{dr}{r}=\int_{\dot{r}_0}^{\dot{r}_f}\frac{d\dot{r}}{\dot{r}}\\
\dot{r}= br^4\\
b=\frac{r_0^4}{\dot{r}_0}
\end {align*}$$
Plugging into ##F_r##$$
F_r=m(\ddot{r}-r\dot{\theta}^2)=4mb^2r^7(1-\frac{c^2}{r^2})$$
I think I got it right this time...whatever...I found this problem interesting.
 
  • #13
Kaguro said:
since tangential part of acceleration is zero,
Be careful with the terminology.
You are given that the transverse component is zero, i.e. the ##\hat\theta## component, also known as the circumferential component. It is normal to the radial component.
The tangential component is in the direction of the velocity and is normal to the centripetal component.
 
Back
Top