What is the magnitude of the vector

  • Thread starter Thread starter -EquinoX-
  • Start date Start date
  • Tags Tags
    Magnitude Vector
-EquinoX-
Messages
561
Reaction score
1

Homework Statement



what is the magnitude of the vector:

v = 3i - 4j - k

Homework Equations





The Attempt at a Solution



what I have is:

sqrt(3^2 + (-4)^2 + (-1)^2)

is this correct?
 
Physics news on Phys.org


It's correct, but should be simplified. Carry out the operations in the outer parentheses so that your answer is the square root of a single number.
 


hmm..the question asks for an exact answer... so should it just be sqrt(26)
 


That ***is*** the exact answer.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top