lollypop
- 33
- 0
hello everybody:
A hollow, plastic sphere is held below the surface of a freshwater lake by a cord anchored to the bottom of the lake. The sphere has a volume of 0.700 M^3 and the tension in the cord is 930 N.
Calculate the buoyant force exerted by the water on the sphere. Take the density of water to be 1000 kg/m^3 and the free fall acceleration to be 9.80 m/s^2.
**for this I set up Bouyant = density *Volume*gravity = 6860 N
What is the mass of the sphere? Take the density of water to be 1000kg/m^3 and the free fall acceleration to be 9.80m/s^2 .
**here I used Buoyant = mg-T and solved for m, so answer for m= 605 kg
The cord breaks and the sphere rises to the surface. When the sphere comes to rest, what fraction of its volume will be submerged? Express your answer as a percentage.
** here is my problem
, so far all I have is that the sphere is at rest so there is no external force acting on it, so F=B+T+(-mg) =0 right?? I don't know what else to use for this part. Any clues??
A hollow, plastic sphere is held below the surface of a freshwater lake by a cord anchored to the bottom of the lake. The sphere has a volume of 0.700 M^3 and the tension in the cord is 930 N.
Calculate the buoyant force exerted by the water on the sphere. Take the density of water to be 1000 kg/m^3 and the free fall acceleration to be 9.80 m/s^2.
**for this I set up Bouyant = density *Volume*gravity = 6860 N
What is the mass of the sphere? Take the density of water to be 1000kg/m^3 and the free fall acceleration to be 9.80m/s^2 .
**here I used Buoyant = mg-T and solved for m, so answer for m= 605 kg
The cord breaks and the sphere rises to the surface. When the sphere comes to rest, what fraction of its volume will be submerged? Express your answer as a percentage.
** here is my problem
