What Is the Maximum Length of a Plasma Tube to Excite Only One Frequency?

StrongForce
Messages
10
Reaction score
0

Homework Statement



Alright this is from the MIT intro series book by AP French on Waves and Optics, Problem 6-10 (If you happen to have the book)

"A laser can be made by placing a plasma tube in an optical presonany caity formed by two highly reflecting faltmirrors, which act like rigid walls for light waves. The purpose of the plasma tube is produce light by exciting normal modes of the cavity."

"Supose that the plasma tube emits light centered at frequency 5E14 Hz and that it has a spectral width of +- 1E9 Hz. What is the largest value of the Length of the Tube (L) where only one frequency in the spectrum will be excitied in the plasma tube? Assume the speed of light to be c=3E8 m/s"

Any help on this would be great, I have no idea how to do it.



Homework Equations



\lambda=2L/n

c=\lambda*\nu

The Attempt at a Solution



So, we know that this wavelength has to be completely unique, and so tiny that no other wave can propigate. This means that we need to find the largest wavelength whose fundamental isn't not a harmonic of any other frequencies, which would allow those frequencies to propigate in the tube.

I ahve no clue how to set this up mathematically
 
Physics news on Phys.org
Here's my guess at a starting point:
Lasers work because of the resonant cavity. For a cavity with mirrors at either end, a resonant wavelength is one such that after making a round trip in the cavity, there's some multiple of 2pi phase shift. (That's where your \lambda = 2L/n comes from, right? The n there is an integer, not refractive index) So you can also say that the cavity length L = n*lambda/2, and then consider how big n can be before another lambda is also satisfied. This is probably where the spectral width comes in.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top