What is the maximum spring displacement?

Click For Summary
SUMMARY

The maximum spring displacement for a mass of 1 kg dropped from a height of 6 m onto an ideal spring with a spring constant of 20 N/m is calculated to be 1.6 m. The total energy at the point of contact is derived from gravitational potential energy, equating to 9.8 J. The equation used to determine the spring compression incorporates both the gravitational force acting on the mass and the spring force, resulting in the quadratic equation 0 = 10x² - 9.8x - 9.8. The positive solution of this equation confirms that the spring compresses by 1.6 m.

PREREQUISITES
  • Understanding of gravitational potential energy (E = mgh)
  • Familiarity with Hooke's Law (F = kx)
  • Basic knowledge of quadratic equations
  • Concept of energy conservation in mechanical systems
NEXT STEPS
  • Review the principles of energy conservation in mechanical systems
  • Study the derivation and application of Hooke's Law in various contexts
  • Learn how to solve quadratic equations and their applications in physics
  • Explore the effects of spring orientation on energy calculations
USEFUL FOR

Physics students, mechanical engineers, and anyone interested in understanding spring dynamics and energy conservation principles in mechanical systems.

leafy
Messages
73
Reaction score
8
Homework Statement
A mass of 1kg is dropped at a height of 6m on an ideal spring. Calculate the maximum spring displacement. Spring constant k=20N/m. Spring length is 5m.
Relevant Equations
F=kx
E= .5kx^2
the mass will drop 1 m before it comes in contact with the spring. I’m stuck afterward. Please help.
The total energy of 1 m is mgh= 1kgx9.8m/ss x 1m = 9.8J
9.8J = .5 x 20N/m x x^2 ---> x = .99 m
the spring is compressed by .99 m ?
 

Attachments

  • 897E8D99-7507-43B6-BB6F-552C4ED9492E.jpeg
    897E8D99-7507-43B6-BB6F-552C4ED9492E.jpeg
    22.9 KB · Views: 130
Last edited:
Physics news on Phys.org
See PF guidelines: we need you to post an attempt at solution!

Hint: what is your E?
 
yes sorry, my attempt is not right, but i should take a shot.
 
leafy said:
Homework Statement:: A mass of 1kg is dropped at a height of 6m on an ideal spring. Calculate the maximum spring displacement. Spring constant k=20N/m. Spring length is 5m.
Relevant Equations:: F=kx
E= .5kx^2

the mass will drop 1 m before it comes in contact with the spring. I’m stuck afterward. Please help.
The total energy of 1 m is mgh= 1kgx9.8m/ss x 1m = 9.8J
9.8J = .5 x 20N/m x x^2 ---> x = .99 m
the spring is compressed by .99 m ?
Gravity does not switch off when the mass contacts the spring.
 
Thanks for the insight, so we must take gravity into account during the compression.

mg(1m) +mg(x) = .5k(x^2) ---> 0 = 10x^2 - 9.8x - 9.8

x=-.6; x = 1.6

So we take the positive one which is 1.6 m of spring compression? how can i double check this?
 
leafy said:
Thanks for the insight, so we must take gravity into account during the compression.

mg(1m) +mg(x) = .5k(x^2) ---> 0 = 10x^2 - 9.8x - 9.8

x=-.6; x = 1.6

So we take the positive one which is 1.6 m of spring compression? how can i double check this?
The only check I can think of is to substitute back into the quadratic. Looks right to me.
 
I don't feel comfortable about this answer. The solution should allows us to rotate the spring horizontally at maximum compression and it would yield the same result in term of energy. However, the horizontal position doesn't have a force of mg=10N pressing on it like the vertical position, so something is off. Thanks for helping though.
 
leafy said:
The solution should allows us to rotate the spring horizontally at maximum compression
About what axis?
 
As the figure shown
 

Attachments

  • 29F24D0E-7AC8-4A56-AF39-A3E2D1D131D3.jpeg
    29F24D0E-7AC8-4A56-AF39-A3E2D1D131D3.jpeg
    48.1 KB · Views: 161
  • #10
leafy said:
As the figure shown
I assume you are taking the speed at contact as the same in both orientations. With that axis, the horizontal version does not have any vertical movement of the mass thereafter, so the energy is different.
 
  • #11
leafy said:
I don't feel comfortable about this answer. The solution should allows us to rotate the spring horizontally at maximum compression and it would yield the same result in term of energy. However, the horizontal position doesn't have a force of mg=10N pressing on it like the vertical position, so something is off. Thanks for helping though.
There is the deformation of the vertical spring due to the dead weight of that mass (that will be the neutral point of any subsequent oscillation), let's call it ##h_{weight}##.
And then the deformation due to the velocity of the mass impacting it (that will be the lowest point of any subsequent oscillation), let's call it ##h_{impact}##.

Just before you turn the compressed spring sideways, what h does it have, ##h_{weight}## only or ##h_{weight}+h_{impact}##?

CNX_Calc_Figure_17_03_001.jpg
 
Last edited:

Similar threads

Replies
17
Views
2K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
2K
Replies
8
Views
6K
Replies
27
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 58 ·
2
Replies
58
Views
3K