What is the minimum height for a ball to complete a loop and rough surface?

  • Thread starter Thread starter stanford1463
  • Start date Start date
  • Tags Tags
    Loop Loop the loop
AI Thread Summary
The discussion centers on calculating the minimum height required for a ball to successfully navigate a loop with radius R and a rough surface of length 6R, where the coefficient of friction is 0.5. The initial potential energy must be sufficient to overcome both the energy needed to pass the loop and the work done against friction on the rough surface. The calculations indicate that the minimum height h must be at least 5.5R to meet these energy requirements. Additionally, two constraints are highlighted: the ball must maintain enough speed to stay in the loop and have sufficient potential energy to traverse the rough patch. The conclusion emphasizes that meeting these constraints ensures the ball can complete the course successfully.
stanford1463
Messages
44
Reaction score
0

Homework Statement



So, this problem is about energy. The question is: what must the minimum height (in R) of a height be, for a ball to go down it, through a loop the loop (with radius R), and then through a rough surface 6R's long with u= 0.5.

Homework Equations


gravitational potential energy= mgh
kinetic energy= 1/2mv^2
work of friction= umgs

The Attempt at a Solution


Hopefully this is right: I did initial potential energy= mgh= 1/2mv^2 (kinetic needed to get past the top of the loop) + umgs (work of friction of the surface) + mgh (potential energy at top of loop). Also, I got v^2=Rg, since using the centripetal force equation mv^2/R, I made it equal to the normal force, mg, and v^2=Rg.
The mg's cancel out, so you're left with h=1/2R + (0.5)6R + 2R, which equals 5.5R. Is this right??
 
Physics news on Phys.org
bump?
 
stanford1463 said:

Homework Statement



So, this problem is about energy. The question is: what must the minimum height (in R) of a height be, for a ball to go down it, through a loop the loop (with radius R), and then through a rough surface 6R's long with u= 0.5.

Homework Equations


gravitational potential energy= mgh
kinetic energy= 1/2mv^2
work of friction= umgs

The Attempt at a Solution


Hopefully this is right: I did initial potential energy= mgh= 1/2mv^2 (kinetic needed to get past the top of the loop) + umgs (work of friction of the surface) + mgh (potential energy at top of loop). Also, I got v^2=Rg, since using the centripetal force equation mv^2/R, I made it equal to the normal force, mg, and v^2=Rg.
The mg's cancel out, so you're left with h=1/2R + (0.5)6R + 2R, which equals 5.5R. Is this right??

m\vec{g}NR-\vec{W}=0. Solve. So long as N>\frac{5}{2}, you're fine (because that's the min. height for an object to go through any loop-the-loop).
 
There are 2 constraints that need to be met aren't there?

One is the height must be sufficient for the golf ball to stay in the loop the loop. The other is that you must start with enough potential energy to make it through the rough patch. Consider them separately.

Figure first then the work to get through the rough patch.
W = f * d = u*mg*d = .5*6R*mg = 3R*mg
So long as PE > W it will make it right? So Constraint 2 is mg*h > mg*3R or h > 3R

What about the loop the loop?
3R*mg = mV2/2 means V2 will be at least 6*R*g.

At the top of the loop the outward force of the mv2/R must be greater than the weight mg.
mV2/R > mg ? Well substitute the necessary V2 for the rough patch of constraint 2.

m*6*R*g/R = 6*mg > mg ?

If constraint 2 is met then is that sufficient?
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top