What is the Non-Simplest Group of Order mp?

  • Thread starter Thread starter playa007
  • Start date Start date
  • Tags Tags
    Group
playa007
Messages
25
Reaction score
0

Homework Statement


Let G be a group with |G|= mp where p is prime and 1<m<p. Prove that G is not simple


Homework Equations





The Attempt at a Solution


I have proven the existence of a subgroup H that has order p(via Cauchy's Theorem), but I don't know how to use the representation of G on cosets of H or another method to somehow deduce that H is a normal subgroup of G thus forcing G to be not simple.
 
Physics news on Phys.org
Let G act on the cosets of H by left translation. This induces a homomorphism f:G->S_[G:H]=S_m (why?). Since kerf sits in H (why?), we can consider [H:kerf]. Since |H|=p, it follows that either [H:kerf]=1 or [H:kerf]=p (why?). If it's the former, we're done (why?). So suppose that [H:kerf]=p and deduce a contradiction.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top