ƒ(x)
- 327
- 0
Given the limit of \frac{x^2+2x}{x^2-3x} as x approaches 0 equals \frac{-2}{3} and that ε = .01, find the greatest c such that every δ between zero and c is good. Give an exact answer.
0 < |x-0| < δ
0 < |\frac{x^2+2x}{|x^2-3x} + \frac{2}{3|}| < ε
|\frac{x(x+2)}{|x(x-3)} + \frac{2}{3|}| = .01
|\frac{x+2}{|x-3|}| = \frac{-197}{300}
300(x+2) = -197(x-3)
300x + 600 = -197x + 591
497x = -9
x = \frac{-9}{497}
But, my book got \frac{9}{503}
0 < |x-0| < δ
0 < |\frac{x^2+2x}{|x^2-3x} + \frac{2}{3|}| < ε
|\frac{x(x+2)}{|x(x-3)} + \frac{2}{3|}| = .01
|\frac{x+2}{|x-3|}| = \frac{-197}{300}
300(x+2) = -197(x-3)
300x + 600 = -197x + 591
497x = -9
x = \frac{-9}{497}
But, my book got \frac{9}{503}
Last edited: