I What is the physical significance of Bell's math?

N88
Messages
225
Reaction score
12
Bell (1964) http://cds.cern.ch/record/111654/files/vol1p195-200_001.pdf has 3 unnumbered equations following his equation (14). Let them be (14a)-(14c). Bell then uses his equation (1) to move from (14a)-(14b). It seems to me that he uses this:

[A(b,λ)]2 = 1. (X)

Now Bell (page 195) does not mind whether λ is continuous or discrete. So if we let λ be discrete, Bell needs this:

[A(bi)][A(bj)] = 1; (Y)

because each λ is drawn from a different run of the experiment (N times with λi from the test with the detectors set at a and b; N times with λj from the other test with the detectors set at a and c). So (with i = 1, 2, ..., N; j = N+1, N+2, …, 2N), is Bell assuming that he has a set of particles that he can test twice, and in the same order, in each test? So then λi = λj every time?

And is such an assumption in keeping with EPR and EPRB, the paper and the experiment that he is studying?

Because if λi ≠ λj:

[A(bi)][A(bj)] = ± 1; (Z)

and then his (14a) ≠ (14b).

Thank you.
Edited to fix brackets.
 
Physics news on Phys.org
N88 said:
Bell (1964) http://cds.cern.ch/record/111654/files/vol1p195-200_001.pdf has 3 unnumbered equations following his equation (14). Let them be (14a)-(14c). Bell then uses his equation (1) to move from (14a)-(14b). It seems to me that he uses this:

[A(b,λ)]2 = 1. (X)

Now Bell (page 195) does not mind whether λ is continuous or discrete. So if we let λ be discrete, Bell needs this:

[A(bi)][A(bj)] = 1; (Y)

because each λ is drawn from a different run of the experiment (N times with λi from the test with the detectors set at a and b; N times with λj from the other test with the detectors set at a and c). So (with i = 1, 2, ..., N; j = N+1, N+2, …, 2N), is Bell assuming that he has a set of particles that he can test twice, and in the same order, in each test? So then λi = λj every time?

And is such an assumption in keeping with EPR and EPRB, the paper and the experiment that he is studying?

Because if λi ≠ λj:

[A(bi)][A(bj)] = ± 1; (Z)

and then his (14a) ≠ (14b).

Thank you.
Edited to fix brackets.
You are getting at something important. However, once you accept (14a), (14b) follows whether you are using sums or integrals Y would be [A(bk)]2 = 1.

What his assumption of the hidden variables λ allows him to do in (14a) is say that for a particular instance, say, λ0 we get the same value A(a0) whether the B detectors were set at b or c. This is compatible with EPR, the reality facing A (and hence which λ) is unaffected by what B is doing. This sometimes goes by the name of realism.
Equivalently, if we made the measurement at instance λ0 and get values A(a0) and B(b0) there would still have been a value B(c0) even though it was never measured. This goes by the name counterfactual definite (CFD).

Now you want to say that we shouldn't be allowed to use the same λ0 for A(a0) when the B detectors are at b or c. Different runs you say. Well what you're doing is objecting to the consequences of hidden variables (or realism, or CFD). You're in good company - except for those that deny locality, i.e. A does affect B, some faster than light phenomena, spooky action at a distance.
 
Last edited:
  • Like
Likes amyami and SongjiSMD7050
Zafa Pi said:
You are getting at something important. However, once you accept (14a), (14b) follows whether you are using sums or integrals Y would be [A(bk)]2 = 1.

What his assumption of the hidden variables λ allows him to do in (14a) is say that for a particular instance, say, λ0 we get the same value A(a0) whether the B detectors were set at b or c. This is compatible with EPR, the reality facing A (and hence which λ) is unaffected by what B is doing. This sometimes goes by the name of realism.
Equivalently, if we made the measurement at instance λ0 and get values A(a0) and B(b0) there would still have been a value B(c0) even though it was never measured. This goes by the name counterfactual definite (CFD).

Now you want to say that we shouldn't be allowed to use the same λ0 for A(a0) when the B detectors are at b or c. Different runs you say. Well what you're doing is objecting to the consequences of hidden variables (or realism, or CFD). You're in good company - except for those that deny locality, i.e. A does affect B, some faster than light phenomena, spooky action at a distance.

Thanks Zafa Pi; if I understand you correctly, I am happy to be in that good company. That is, in company with those who deny nonlocality, FTL-causality, spooky-action, etc. But I wonder:

1. Is CFD is being properly used here. To me, as a realist, the counter-fact would be this: IF we had tested B(c0) instead of B(b0), THEN the result would have been consistent with A(a0). But there would be no value B(b0); for what did not happen did not happen. In other words, the value B(b0) needs be produced via a decoherent interaction between λ0 and the detector-field represented by b -- and that did not happen.

2. However, putting such complexities aside for the moment: there appears to be a simpler resolution of my difficulty.

That is, we can rightly (by which I mean: without controversy) say that Bell's theorem applies to any setting that satisfies his assumption [A(b,λ)]2 = 1. (X) Full stop.

Then, since all classical situations known to me do just that -- they satisfy (X) -- Bell's theorem is a valid limit on all such classical situations. Full stop.

But EPRB, as studied in Bell (1964), is not such a situation. So I am not bound to accept the popular belief that Bell's theorem is relevant to EPRB, or to QM in general.

Hopefully: this allows me to remain a hopeful local-realist in good standing with that good company?
 
N88 said:
...

...So I am not bound to accept the popular belief that Bell's theorem is relevant to EPRB, or to QM in general.

Hopefully: this allows me to remain a hopeful local-realist in good standing with that good company?

If you don't share the definition of "realism" per EPR (their "elements of reality"), then naturally you disagree about Bell.

Not too many will be standing with you, but there are always a determined few. :smile:
 
I'm not sure why you think there's any assumption about the product of two different measurement axes equaling to one. There's not. And it's very strange for you to say you're a realist when you used an argument talking about how measurements that happen to not happen aren't well defined.

Maybe it will help if I break down Bell's steps to reach 14(b) more than his paper does.

First, we assume there is some hidden variable ##\lambda## that determines the measurement outcomes for both Alice and Bob no matter what direction ##v## they each measure. By experiment, we know the measurement result must always be +1 or -1:

$$\forall v: A_\lambda(v) \in \{-1, +1\}$$ $$\forall v: B_\lambda(v) \in \{-1, +1\}$$
Furthermore, by experiment, we know that when Alice and Bob measure in the same direction then the measurement outcomes must be opposite:

$$\forall v: A_\lambda(v) = -B_\lambda(v)$$
If Alice measures along ##a## and Bob measures along ##b##, and then they multiply their results together, they get the parity measurement result ##A_\lambda(a) \cdot B_\lambda(b)## which will also either be -1 or +1. We assume the observed probability distribution ##P## of this parity measurement result is determined by some hidden, but consistent across experiments, probability distribution ##p## of ##\lambda##:

$$\forall a, b: P(a, b) = \sum_\lambda p(\lambda) \cdot A_\lambda(a) \cdot B_\lambda(b)$$
**NO MORE ASSUMPTIONS ARE INTRODUCED BEYOND THIS POINT. JUST THE MATH OF SUMS.**

Using the fact that ##A## is opposite to ##B##, we can rewrite the above equation in terms of just ##A##:

$$\forall a, b: P(a, b) = -\sum_\lambda p(\lambda) \cdot A_\lambda(a) \cdot A_\lambda(b)$$
For compactness, I'm going to shorten ##A_\lambda(x)## into just ##x_\lambda## for various symbols ##x##. The compact version of the above equation is:

$$\forall a, b: P(a, b) = -\sum_\lambda p(\lambda) a_\lambda b_\lambda$$
Now consider what happens when we compute the difference in predicted probabilities between two possible observations:

$$P(a, b) - P(a, c)$$
We expand the definition inline:

$$\forall a, b, c: P(a, b) - P(a, c) = \left(-\sum_\lambda p(\lambda) a_\lambda b_\lambda\right) - \left(-\sum_\lambda p(\lambda) a_\lambda c_\lambda\right)$$
Because the two sums are over the same set, and addition is associative and commutative, we can merge the sums:

$$\forall a, b, c: P(a, b) - P(a, c) = -\sum_\lambda \big(p(\lambda) a_\lambda b_\lambda - p(\lambda) a_\lambda c_\lambda\big)$$
We factor out ##p(\lambda) a_\lambda## and flip the subtraction to cancel out the leading negation:

$$\forall a, b, c: P(a, b) - P(a, c) = \sum_\lambda p(\lambda) a_\lambda \left(c_\lambda - b_\lambda\right)$$
Now, because ##b_\lambda## is either -1 or +1, we can multiply by ##b_\lambda^2=1## without changing the computed result:

$$\forall a, b, c: P(a, b) - P(a, c) = \sum_\lambda p(\lambda) a_\lambda b_\lambda^2 \left(c_\lambda - b_\lambda\right)$$
We keep one ##b_\lambda## outside, and distribute the other one over the subtraction:

$$\forall a, b, c: P(a, b) - P(a, c) = \sum_\lambda p(\lambda) a_\lambda b_\lambda \left(b_\lambda c_\lambda - b_\lambda b_\lambda\right)$$
Again, we know that ##b_\lambda b_\lambda = 1##, so we can simplify:

$$\forall a, b, c: P(a, b) - P(a, c) = \sum_\lambda p(\lambda) a_\lambda b_\lambda \left(b_\lambda c_\lambda - 1\right)$$
This last equation is the one you were saying we couldn't reach without assuming that ##A_\lambda(x) \cdot A_\lambda(y) = 1## for ##x \neq y##. But notice that I never made that assumption. I only ever assumed that ##A_\lambda(x)^2 = 1##.

It's true that, in practice, you will experimentally measure the difference in predicted probabilities by doing many runs of an experiment measuring each part. But that doesn't change the fact that the math should still give the right answer. If the system was really like a probability distribution over a hidden variable, we'd be able to sample the difference in probabilities by sampling each probability and then subtracting.
 
  • Like
Likes Boing3000 and SongjiSMD7050
Strilanc said:
I'm not sure why you think there's any assumption about the product of two different measurement axes equaling to one. There's not. And it's very strange for you to say you're a realist when you used an argument talking about how measurements that happen to not happen aren't well defined.

I couldn't figure that one out either. By my reading, N88 rejects CFD and is not a realist. Nothing wrong with that position, but usually they don't call themselves local realists.

But hey, people can label themselves however they like. :smile:
 
DrChinese said:
If you don't share the definition of "realism" per EPR (their "elements of reality"), then naturally you disagree about Bell.

Not too many will be standing with you, but there are always a determined few. :smile:

With Bell, I share d'Espagnat's definition of realism: regularities in observed phenomena are caused by some physical reality whose existence is independent of human observers.
 
Strilanc said:
I'm not sure why you think there's any assumption about the product of two different measurement axes equaling to one. There's not. And it's very strange for you to say you're a realist when you used an argument talking about how measurements that happen to not happen aren't well defined. … ….

Thanks Strilanc, much appreciated. 2 points:

1. I AM not sure why you (Strilanc) think there's any assumption about the product of two different measurement axes equaling to one!

2. Perhaps I'm confused with this next? You provide 13 equations. Numbering them (1)-(13), I'm not sure how to interpret (5). You appear to be specifying a probability P that can take negative values?

Are you using the same notation as Bell? Because his P denotes an expectation, not a probability. Then, for a less confusing more compact notation, you could use $$\left\langle AB\right\rangle$$ to denote an expectation.
 
N88 said:
With Bell, I share d'Espagnat's definition of realism: regularities in observed phenomena are caused by some physical reality whose existence is independent of human observers.

That isn't useful in discussions of Bell, and makes any attempt to associate things with generally accepted science difficult, if not impossible. But you are certainly welcome to your opinion.

And it certainly would be ridiculous to assert your opinion on that overlaps Bell's paper in any way. What Bell said at later times, in varying contexts, is not really relevant to Bell's Theorem.
 
  • Like
Likes Zafa Pi
  • #10
DrChinese said:
That isn't useful in discussions of Bell, and makes any attempt to associate things with generally accepted science difficult, if not impossible. But you are certainly welcome to your opinion.

And it certainly would be ridiculous to assert you opinion on that overlaps Bell's paper in any way. What Bell said at later times, in varying contexts, is not really relevant to Bell's Theorem.
Being endorsed by Bell and d'Espagnat, I thought I'd be on safe grounds. What definition do you prefer?
 
  • #11
N88 said:
Being endorsed by Bell and d'Espagnat, I thought I'd be on safe grounds. What definition do you prefer?

The norm is to go back to EPR:

1. If a physical quantity of a system can be predicted with certainty without disturbing that system, there must be an element of reality associated with it.
2. It would be unreasonable to require that ALL such elements be able to be simultaneously predicted, to accord them status as elements of reality.

The combination of those leads to the hypothesis that quantum properties are counterfactually definite - what is often called hidden variables but certainly would be considered predetermined prior to measurement. This is what Bell went on to attack, and he expressed the hypothesis of CFD in the specific equations you are asking about at the start of this thread. Note the title of his paper: "On the Einstein Podolsky Rosen Paradox".

So no, your quote is quite a ways from the Bell paper.
 
  • #12
N88 said:
2. Perhaps I'm confused with this next? You provide 13 equations. Numbering them (1)-(13), I'm not sure how to interpret (5). You appear to be specifying a probability P that can take negative values?

Are you using the same notation as Bell? Because his P denotes an expectation, not a probability. Then, for a less confusing more compact notation, you could use $$\left\langle AB\right\rangle$$ to denote an expectation.

Blergh, right, it's an expected value not a probability. I should have used ##E## and not said "probability distribution" so much.
 
  • #13
N88 said:
Thanks Zafa Pi; if I understand you correctly, I am happy to be in that good company. That is, in company with those who deny nonlocality, FTL-causality, spooky-action, etc. But I wonder:
I am glad you are happy. These are trying times.
N88 said:
1. Is CFD is being properly used here.
I am using it as in Wikipedia: In quantum mechanics, counterfactual definiteness (CFD) is the ability to speak meaningfully of the definiteness of the results of measurements that have not been performed
N88 said:
That is, we can rightly (by which I mean: without controversy) say that Bell's theorem applies to any setting that satisfies his assumption [A(b,λ)]2 = 1. (X) Full stop.
There is no assumption here, [A(b,λ)] = + or - 1 so the square is 1.
N88 said:
Then, since all classical situations known to me do just that -- they satisfy (X) -- Bell's theorem is a valid limit on all such classical situations. Full stop.

But EPRB, as studied in Bell (1964), is not such a situation. So I am not bound to accept the popular belief that Bell's theorem is relevant to EPRB, or to QM in general.
I'm not following you here. (X) is true no matter what. You are bound to accept the popular belief, you've just failed to notice the chains around you.:wink:
N88 said:
Hopefully: this allows me to remain a hopeful local-realist in good standing with that good company?
BEWARE! There is no good company of local-realists. At worst they are evil, at best they are old-fashioned.:-p
 
  • Like
Likes OCR
  • #14
N88 said:
But EPRB, as studied in Bell (1964), is not such a situation. So I am not bound to accept the popular belief that Bell's theorem is relevant to EPRB, or to QM in general.

I don't understand that at all. Bell proved that for a certain wide category of theories, correlations between distant (causally disconnected) measurements must obey a certain inequality. Quantum mechanics does not obey the inequality. Therefore, QM is not secretly one of those theories. QED

To say that Bell's theorem is not relevant to QM because QM isn't the type of theory to which Bell's proof applies seems weird. That conclusion is the whole point of his theorem.
 
  • #15
stevendaryl said:
To say that Bell's theorem is not relevant to QM because QM isn't the type of theory to which Bell's proof applies seems weird. That conclusion is the whole point of his theorem.
I totally agree with your statement. But Bell wrote his paper in 1964 before even a hint of testing. Since 1981 that has changed. Let me explain the relevance.
Essentially every time there is a discussion of the Bell Business in this Forum people get hung up in the details of QM, which misses the point.

The derivation of a Bell Theorem has nothing to do with QM. (and by the way the later theorems, e.g. CHSH, GHZ etc. are far easier to follow than Bell's own given in this thread, though of course he was the first to make the brilliant observation)

After a Bell Theorem has been presented it can be pointed out that lab tests refute the inequality, leaving QM out of it. (As a side note it could be pointed out that QM predicts the the lab results.) I have personally found that this approach keeps the focus on the essential question:
What are the assumptions (hypotheses) of Bell's Theorem that lead to a conflict with reality?
 
  • #16
Zafa Pi said:
I totally agree with your statement. But Bell wrote his paper in 1964 before even a hint of testing. Since 1981 that has changed. Let me explain the relevance.
Essentially every time there is a discussion of the Bell Business in this Forum people get hung up in the details of QM, which misses the point.

The derivation of a Bell Theorem has nothing to do with QM. (and by the way the later theorems, e.g. CHSH, GHZ etc. are far easier to follow than Bell's own given in this thread, though of course he was the first to make the brilliant observation)

After a Bell Theorem has been presented it can be pointed out that lab tests refute the inequality, leaving QM out of it. (As a side note it could be pointed out that QM predicts the the lab results.) I have personally found that this approach keeps the focus on the essential question:
What are the assumptions (hypotheses) of Bell's Theorem that lead to a conflict with reality?

Well, I agree with that.
 
  • #17
stevendaryl said:
Well, I agree with that.

I look forward to answers to Zafa Pi's question: What are the assumptions (hypotheses) of Bell's Theorem that lead to a conflict with reality?

DrChinese? Strilanc? stevendaryl? With my thanks in advance.
 
  • #18
N88 said:
I look forward to answers to Zafa Pi's question: What are the assumptions (hypotheses) of Bell's Theorem that lead to a conflict with reality?

DrChinese? Strilanc? stevendaryl? With my thanks in advance.
I would like to see your answer.
 
  • #19
Bell's notion of a local realistic theory is pretty clear to me. What's hard for me to understand is what would count as a non-realistic theory. Presumably a completely relational model, where there is no objective answer to a question such as "What result did Bob get for his measurement", but there are only answers relative to a particular observer.

As for Bell's assumptions, he makes it all clearer in an essay called "The Theory of Local Beables".

Roughly speaking, a local realistic model means to me that
  • there is a physical notion of the "state" of some little region of the universe at a particular time
  • the future state of one little region depends only on the current state of that region and neighboring regions
  • when you perform a measurement, the outcome reveals facts about the local state of the region where the measurement was performed (the region including both the measuring device and the system being measured)
The minimalist interpretation of quantum mechanics is not a local realistic model, because there is no notion of the state of a region. There is an overall state of the entire system under consideration, but this state is nonlocal.
 
  • #20
N88 said:
I look forward to answers to Zafa Pi's question: What are the assumptions (hypotheses) of Bell's Theorem that lead to a conflict with reality?

DrChinese? Strilanc? stevendaryl? With my thanks in advance.

The assumption of counterfactual definiteness embodied in Bell's statement follows [14] in which Bell makes the assumption:

"It follows that c is another unit vector"

If it weren't assumed, the rest of the reasoning would not work.
 
  • #21
Zafa Pi said:
I would like to see your answer.

As you know, I sent my answers privately. I did this as a holding measure: I did not want "my answers" to be an early side-issue in the discussion here. (For I'm the student/learner here and we already know that you, for one, did not understand them.)

When you and others have answered your question, I'll bring my private answers here, unchanged.
 
  • #22
Strilanc said:
Maybe it will help if I break down Bell's steps to reach 14(b) more than his paper does.
I have two technical comments to this post. They don't affect the over all point you are trying to make.
Strilanc said:
Now consider what happens when we compute the difference in predicted probabilities between two possible observations:

P(a,b)−P(a,c)​
P(a,b) and P(a,c) are not probabilities, but rather expectations. Poor choice of notation on Bell's part.
Strilanc said:
∀a,b,c:P(a,b)−P(a,c)=∑λp(λ)aλbλ(bλcλ−1)∀a,b,c:P(a,b)−P(a,c)=∑λp(λ)aλbλ(bλcλ−1)​
\forall a, b, c: P(a, b) - P(a, c) = \sum_\lambda p(\lambda) a_\lambda b_\lambda \left(b_\lambda c_\lambda - 1\right)
This last equation is the one you were saying we couldn't reach without assuming that Aλ(x)⋅Aλ(y)=1Aλ(x)⋅Aλ(y)=1A_\lambda(x) \cdot A_\lambda(y) = 1 for x≠yx≠yx \neq y. But notice that I never made that assumption. I only ever assumed that Aλ(x)2=1Aλ(x)2=1A_\lambda(x)^2 = 1.

It's true that, in practice, you will experimentally measure the difference in predicted probabilities by doing many runs of an experiment measuring each part. But that doesn't change the fact that the math should still give the right answer. If the system was really like a probability distribution over a hidden variable, we'd be able to sample the difference in probabilities by sampling each probability and then subtracting.
What we have here is that the difference in expectations is the expectation of the difference.
I don't know why the quote came out muddled.
 
Last edited:
  • #23
Strilanc said:
Blergh, right, it's an expected value not a probability. I should have used E and not said "probability distribution" so much.
Sorry, I missed this.
 
  • #24
stevendaryl said:
Bell's notion of a local realistic theory is pretty clear to me. What's hard for me to understand is what would count as a non-realistic theory.
Well at the end of your post you say, "The minimalist interpretation of quantum mechanics is not a local realistic model," So if one assumes locality then QM is a non-realistic theory. No?

After wandering the internet for lectures, articles, posts, and blogs for several years my conclusion (via casual empiricism) is that more physicists say that the falsification of Bell's Inequality is due to non-local phenomena of entangled entities. Does that mean that they reject a basic tenet of relativity? Or do entangled particles remained linked by worm holes or something?
 
  • Like
Likes OCR
  • #25
N88 said:
As you know, I sent my answers privately. I did this as a holding measure: I did not want "my answers" to be an early side-issue in the discussion here. (For I'm the student/learner here and we already know that you, for one, did not understand them.)

When you and others have answered your question, I'll bring my private answers here, unchanged.
I answered in post #2. I interpret DrChinese's response in post #20 to be essentially the same, though more casual.
"Determinism by any other name (such as hidden variables, CFD, realism) shall smell as sour." Niels Shakespeare.
 
  • Like
Likes OCR
  • #26
Zafa Pi said:
Well at the end of your post you say, "The minimalist interpretation of quantum mechanics is not a local realistic model," So if one assumes locality then QM is a non-realistic theory. No?

I would say that QM is nonlocal, in Bell's sense. A local theory in Bell's sense has a notion of "state" such that the state of the entire universe can "factor" into states for each little neighborhood. In QM, there is no notion of the state of a small region, there is only a notion of state for the entire universe as a whole.

Let me back off from that--if you use density matrices, then you can make sense of the state of a small region---you just trace over the degrees of freedom outside that region. However, the complete state of a pair of regions is not determined by the state of each region separately. QM has nonlocal information. In an EPR-type experiment with anti-correlated pairs of spin-1/2 particles, the local description for Alice is: equal probability for getting spin-up or spin-down. The local description for Bob is: equal probability for getting spin-up or spin-down. But for the pair of them, there is additional information: The probability they will both get the same result is sin^2(\frac{\theta}{2}), where \theta is the angle between their detector orientations. That's nonlocal information.

It doesn't violate relativity because the nonlocal description of the situation between Alice and Bob is the same in all reference frames.
 
  • Like
Likes Boing3000
  • #27
stevendaryl said:
It doesn't violate relativity because the nonlocal description of the situation between Alice and Bob is the same in all reference frames.
Is the angle between Alice and Bobs detectors the same in all reference frames? I suspect not.
 
  • #28
DrChinese said:
The assumption of counterfactual definiteness embodied in Bell's statement follows [14] in which Bell makes the assumption:

"It follows that c is another unit vector"

If it weren't assumed, the rest of the reasoning would not work.

I hold a different view: It is OK to consider c, another unit vector, but the rest of the reasoning does not work.
 
  • #29
Jilang said:
Is the angle between Alice and Bobs detectors the same in all reference frames? I suspect not.

No, but things don't have to look the same in every reference frame in order for things to be covariant. The recipe for applying quantum mechanics can be done in any reference frame, and the results in different frames will always be compatible (I assume; if not, that would certainly be an indication that something is wrong with either QM or relativity).
 
  • #30
stevendaryl said:
No, but things don't have to look the same in every reference frame in order for things to be covariant. The recipe for applying quantum mechanics can be done in any reference frame, and the results in different frames will always be compatible (I assume; if not, that would certainly be an indication that something is wrong with either QM or relativity).

I would have answered Yes. For I thought the angle between the detectors would be the same in all reference frames?
 
  • #31
N88 said:
I would have answered Yes. For I thought the angle between the detectors would be the same in all reference frames?

Well, it's complicated if Alice and Bob change their detector orientations over time. Then the notion of "What is Alice's orientation when Bob's orientation is \vec{b}" becomes frame-dependent.
 
  • #32
stevendaryl said:
Well, it's complicated if Alice and Bob change their detector orientations over time. Then the notion of "What is Alice's orientation when Bob's orientation is \vec{b}" becomes frame-dependent.
Is time relevant here? Aren't the relevant orientations: Alice's in A(ai) under the event that tests the i-th of the twinned-particles and Bob's in B(b,λ'i) under the event that tests the other twin; i = 1, 2, …, N?
 
  • #33
N88 said:
Is time relevant here? Aren't the relevant orientations: Alice's in A(ai) under the event that tests the i-th of the twinned-particles and Bob's in B(b,λ'i) under the event that tests the other twin; i = 1, 2, …, N?

You're right: The predictions of QM say that the only thing that matters is Alice's detector's orientation at the time she makes her measurement, and Bob's detector's orientation at the time he makes his measurement. Whether these events are simultaneous or not is irrelevant.
 
  • #34
stevendaryl said:
… …. QM has nonlocal information. In an EPR-type experiment with anti-correlated pairs of spin-1/2 particles, the local description for Alice is: equal probability for getting spin-up or spin-down. The local description for Bob is: equal probability for getting spin-up or spin-down. But for the pair of them, there is additional information: The probability they will both get the same result is sin^2(\frac{\theta}{2}), where \theta is the angle between their detector orientations. That's nonlocal information.

It doesn't violate relativity because the nonlocal description of the situation between Alice and Bob is the same in all reference frames.

I question this use of "nonlocal".

I've never met Bob, but I understand that he's on the other side of an idealised EPRB experiment. So, as I sit chatting with Alice, we discuss several things that we can predict with certainty. Examples include: (i) Certainly Bob's result, if he chooses the same detector setting as Alice. (ii) If Bob's setting is at \theta wrt hers, then the probability they will both get the same result is certainly sin^2(\frac{\theta}{2}).

Should such information be described as nonlocal?
 
  • #35
Zafa Pi said:
... What are the assumptions (hypotheses) of Bell's Theorem that lead to a conflict with reality?

The assumption that conflicts with reality:

Strilanc said:
Furthermore, by experiment, we know that when Alice and Bob measure in the same direction then the measurement outcomes must be opposite:

This is faulty. When you split photons and shoot them in opposite directions, you only measure them the same when they are measured on their basis vectors (vertical or horizontal). If measured off their basis vectors they do not always measure the same. Bell experiments pre-select only the photons that match, hence the statistics do not appear to make sense. They toss out unmatched measurements as noise.
 
  • #36
N88 said:
... Then, since all classical situations known to me do just that -- they satisfy (X) -- Bell's theorem is a valid limit on all such classical situations. Full stop.

I disagree. Normally, hidden variables give a photon a specific orientation. This clearly does not work, as the normalized Jones Vector polarization vector is not the absolute orientation, but only the "best guess". Consider a classical model where the axis of a photon "wobbles" left and right as in this picture with of photons at various angles and various amount of "Wobble".
photon_spin_samples_small.jpg

This model does not satisfy (X) as the split photons will only measure the same for sure when measured on their basis vector.
 
  • #37
edguy99 said:
This is faulty. When you split photons and shoot them in opposite directions, you only measure them the same when they are measured on their basis vectors (vertical or horizontal). If measured off their basis vectors they do not always measure the same. Bell experiments pre-select only the photons that match, hence the statistics do not appear to make sense. They toss out unmatched measurements as noise.

No, singlet states anti-correlate along all directions. Even directions that aren't your basis vectors. This isn't some kind of trick of analysis in the experiment, the prediction comes directly from the math.

The singlet state doesn't even have a distinguished basis. For example, ##\frac{1}{\sqrt 2}|01\rangle - \frac{1}{\sqrt 2}|10\rangle## is exactly equal to ##\frac{1}{\sqrt 2}|+-\rangle - \frac{1}{\sqrt 2}|-+\rangle##, where ##|+\rangle = \frac{1}{\sqrt 2}|0\rangle + \frac{1}{\sqrt 2}|1\rangle## and ##|-\rangle = \frac{1}{\sqrt 2}|0\rangle - \frac{1}{\sqrt 2}|1\rangle##.

Tossing out possibly relevant measurements as noise sounds like leaving the detection loophole open. And some experiments do that. But there have also been experiments that specifically focus on closing the detection loophole. In the last couple years, there have even been experiments that close both the detection loophole and the signalling loophole at the same time.
 
  • Like
Likes Zafa Pi
  • #38
Strilanc said:
... Tossing out possibly relevant measurements as noise sounds like leaving the detection loophole open. And some experiments do that. But there have also been experiments that specifically focus on closing the detection loophole. In the last couple years, there have even been experiments that close both the detection loophole and the signalling loophole at the same time.

This is the paper they are quoting: https://arxiv.org/abs/1508.05949. They are using only "Event Ready" signals, where the two orientations match, despite generating each setup the same way. If they used every signal, they would find some did not match. They are pre-selecting the events.
 
  • #39
edguy99 said:
The assumption that conflicts with reality:
As an answer to the question: . What are the assumptions (hypotheses) of Bell's Theorem that lead to a conflict with reality? I take it that you're making a tautology joke.This is faulty. When you split photons and shoot them in opposite directions, you only measure them the same when they are measured on their basis vectors (vertical or horizontal). If measured off their basis vectors they do not always measure the same. Bell experiments pre-select only the photons that match, hence the statistics do not appear to make sense. They toss out unmatched measurements as noise.
I agree with Strilanc's post #37. In a recent visit to Zeilinger's optics lab in Vienna the pros said the noise was now negligible. I take their word for it since I'm a mere mathematician, and don't know a photon from a fauxton.
 
  • #40
edguy99 said:
I disagree. Normally, hidden variables give a photon a specific orientation. This clearly does not work, as the normalized Jones Vector polarization vector is not the absolute orientation, but only the "best guess". Consider a classical model where the axis of a photon "wobbles" left and right as in this picture with of photons at various angles and various amount of "Wobble".
photon_spin_samples_small.jpg

This model does not satisfy (X) as the split photons will only measure the same for sure when measured on their basis vector.

Thanks for this; however: Given your model, which is hardly classical, I'd like to see the calculation that breaches Bell's theorem (BT).

Note, there other systems that do no breach BT: Models that are poorly correlated do not breach BT. And, without the wobble, your model does not breach BT. So, as I see it: to breach BT, you need to show that the wobble improves the correlation.
 
  • #41
N88 said:
Thanks for this; however: Given your model, which is hardly classical, I'd like to see the calculation that breaches Bell's theorem (BT).

Note, there other systems that do no breach BT: Models that are poorly correlated do not breach BT. And, without the wobble, your model does not breach BT. So, as I see it: to breach BT, you need to show that the wobble improves the correlation.

The "wobble" model does not match the premise of BT. Ie. A photon that is prepared vertical, then split and measured by Bob and Alice at 45 degrees will not always measure the same. The wobble does significantly improve correlation. When Bob and Alice are off in measurement by 30 degrees, the wobble model will have them measure more matches then you would expect. This is because we are throwing out all the mismatches as "noise" prior to counting. When you use this kind of model in an experiment like this, it produces perfect correlation.
 
  • #42
N88 said:
I question this use of "nonlocal".

I've never met Bob, but I understand that he's on the other side of an idealised EPRB experiment. So, as I sit chatting with Alice, we discuss several things that we can predict with certainty. Examples include: (i) Certainly Bob's result, if he chooses the same detector setting as Alice. (ii) If Bob's setting is at \theta wrt hers, then the probability they will both get the same result is certainly sin^2(\frac{\theta}{2}).

Should such information be described as nonlocal?

Well, it's a matter of definition. I'm defining nonlocal information as information about the state of an system extended in space that does not "factor" into knowledge about smaller parts of the system. It's part of the intuition behind Bell's definition of a local realistic theory that nonlocal information of this type is the result of lack of complete information about the local state. If I take a pair of shoes, and put one shoe into one box, another into another box, mix the boxes up and send one box to Alice and another box to Bob, then my information about the system is nonlocal: Either Alice got the left shoe and Bob got the right shoe, or vice-versa. But if I knew in perfect detail the action of "mixing up the boxes", I would know precisely which shoe Alice will get and which shoe Bob will get. So nonlocal information can be replaced by more detailed local information.

I consider this a very important concept, and I also consider the word "local" to be appropriate, since "local" means "having to do with neighborhoods".
 
  • #43
Zafa Pi said:
I agree with Strilanc's post #37. In a recent visit to Zeilinger's optics lab in Vienna the pros said the noise was now negligible. I take their word for it since I'm a mere mathematician, and don't know a photon from a fauxton.
The noise level may be very low, but it is the definition of entanglement that has the problem. Consider the mathematics of these two models:

Model1: Standard HVT used to model a photon in a Bell (γ − λ is the difference between the photon and detectors angles):
  • if |γ − λ| ≤ π/4 then vertical
  • if |γ − λ| > 3π/4 then vertical
  • horizontal otherwise.
photon_hard_small.jpg

Where color represents the probability of a photon getting through the filter

Model2: Non-Bell style HVT model of photon:
  • Chance of vertical measurement = (cos((γ − λ)*2)+1)/2
  • Chance of horizontal measurement = (cos((γ − λ + π/2)*2)+1)/2
photon_soft_small.jpg

Where shading represents probability of a photon getting through the filter.

If we apply this mathematics to Experimental loophole-free violation of a Bell inequality using entangled electron spins, where two electrons in different places are prepared in the same state (ie. both are up). These electrons can be measured at different angles to see if they are up or down from that angle. A test is done to see if they measure the same. If they do, they are considered entangled.

Consider the experimental setup. If you measure both electrons from the vertical, they will always measure the same. If you measure them at a different angle from vertical, some will measure up, some will not. In model1, both electrons measure the same all the time, in model2, both electrons will not measure the same all the time. This experiment can be modeled with model2 (and will match it exactly) since all mis-matches are not considered entangled and are not counted.

Model2 makes a lot more sense to me. An electron (or photon) has an axis of spin called the normalized Jones vector. All model2 is doing is assuming the electron spin axis is precessing. This makes the measurement somewhat random when read from a different angle compared to the angle it was created at.
 
  • #44
Edguy,I could see how this might lead to the probabilities being higher than you might expect classically, but not how they could be lower.
 
  • Like
Likes edguy99
  • #45
N88 said:
Is time relevant here? Aren't the relevant orientations: Alice's in A(ai) under the event that tests the i-th of the twinned-particles and Bob's in B(b,λ'i) under the event that tests the other twin; i = 1, 2, …, N?
I agree with you except for a technical matter. A(a,λi) and B(b,λ'i) are values of +1 or -1. The orientations are determined by the vectors a and b.
 
  • #46
edguy99 said:
The noise level may be very low, but it is the definition of entanglement that has the problem. Consider the mathematics of these two models:
I am unable to follow your posts, perhaps due to my lack education. Many experimentalists have claimed to have violated Bell Inequalities for versions such as CHSH, GHZ, Hardy, Herbert using entangled photons, and discarding nothing of significance, making a zillion trials and averaging.
Are you saying they are reporting fake news? It is quite fashionable these days.
 
  • #47
stevendaryl said:
I would say that QM is nonlocal, in Bell's sense. A local theory in Bell's sense has a notion of "state" such that the state of the entire universe can "factor" into states for each little neighborhood. In QM, there is no notion of the state of a small region, there is only a notion of state for the entire universe as a whole.
In the paper cited in post #1, Bell says, "It is the requirement of locality, or more precisely that the result of a measurement on one system be unaffected by operations on a distant system with which it has interacted in the past". I find this simpler and more comprehensible. Just what would transpire if they were far apart, preformed their measurements at near the same time, and there were no influences that went faster than light.
 
  • #48
Zafa Pi said:
I am unable to follow your posts, perhaps due to my lack education.

Sorry if I was unclear in the posts and the problem is certainly not your education level. The model1 is taken from Dietrich Dehlinger and M. W. Mitchell “Entangled photons, nonlocality and Bell inequalities in the undergraduate laboratory”. In that paper, they compare the coincidences to the difference in measurement angles of Bob and Alice. This chart illustrates what their experiment got, compared to what a specific "Hidden Variable Theory" (model1) would have got.
photon_detection_landscape.jpg

From the paper: "Our HVT is very simple, and yet it agrees pretty well with quantum mechanics.". You can see if you follow the white dots on the Calculated chart, at 30 degrees, there is not enough matches and at 60 degrees, there are too many matches. It is probably easier to follow the paper then my postings.
Zafa Pi said:
Many experimentalists have claimed to have violated Bell Inequalities for versions such as CHSH, GHZ, Hardy, Herbert using entangled photons, and discarding nothing of significance, making a zillion trials and averaging.
Cant really comment on zillions, but if you have a specific example to post, it would be fun to have a look at it.
 
  • #49
Jilang said:
Edguy,I could see how this might lead to the probabilities being higher than you might expect classically, but not how they could be lower.
The assumption would be that at small angles (closer to 0 degrees), you have lots of photons with at least a small amount of "wobble" so you get more then expected number of matches, just like QM. At large angles (closer to 90 degrees), you have very few photons with that amount of "wobble" so you get less then expected number of matches, just like QM.
 
  • #50
edguy99 said:
Cant really comment on zillions, but if you have a specific example to post, it would be fun to have a look at it.
This has plenty of experimental errors, but can still disprove the Bell Equality (in this case). That is all that's necessary.
https://vcq.quantum.at/fileadmin/Publications/2002-12.pdf

You can go on line and find many with good accuracy.
 
Last edited:
  • Like
Likes edguy99
Back
Top