What is the primitive of sinx/cos^2x?

Krushnaraj Pandya
Gold Member
Messages
697
Reaction score
73

Homework Statement


∫e^(-x)(1-tanx)secx dx
2. Attempt at a solution
I know ∫e^x(f(x)+f'(x))=e^x f(x)
and I intuitively know f(x) could be secx here and therefore f'(x) will be secxtanx but I can't figure out how to reach that
 
Physics news on Phys.org
So you want a primitive of ##\displaystyle { \sin x\over \cos^2 x}## .

It is almost handed over on a silver platter: if ##\ \ -\displaystyle {\sin x\over \cos^2 x}\ ## is ##f'(x)##, what do you have left over for ##f(x)## ?
 
BvU said:
So you want a primitive of ##\displaystyle { \sin x\over \cos^2 x}## .

It is almost handed over on a silver platter: if ##\ \ -\displaystyle {\sin x\over \cos^2 x}\ ## is ##f'(x)##, what do you have left over for ##f(x)## ?
I know the derivative of -secx is -sinx/cos^2 x. the first trouble is that the problem has e^(-x) instead of e^(x). the second is that -sin/cos^2 is the derivative of -secx, not secx. I'm sure these two things tie together somehow through a basic simplification but I can't figure this basic simplification out
 
BvU said:
So you want a primitive of ##\displaystyle { \sin x\over \cos^2 x}## .

It is almost handed over on a silver platter: if ##\ \ -\displaystyle {\sin x\over \cos^2 x}\ ## is ##f'(x)##, what do you have left over for ##f(x)## ?
AHHH! how INCREDIBLY stupid of me. I just had to put -x=t (sorry you had to read this question). I'm never going to be a scientist this way...
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top