What is the relationship between ker(A) and ker(A^TA)?

  • Thread starter Thread starter johndoe3344
  • Start date Start date
  • Tags Tags
    Kernel Transpose
johndoe3344
Messages
28
Reaction score
0
B= A transpose

What is the relation between ker(BA) and ker(A)? I was told that they are equal to each other, but I can't figure out why.

ker(A) => Ax = 0
ker(BA) => BAx = 0 so that BA is a subset of A. This shows that ker(BA) =0 whenever ker(A) = 0, but how does this also show that they are equal?
 
Physics news on Phys.org
It might be the case that your shorthand is obscuring things -- try writing things more precisely, and maybe the answer will become more clear.
 
Hi, thanks for your response.

What do you mean my shorthand? I only said that B = A transpose because I didn't know how to write the superscript T on the forums (is that what you meant?)

Does showing that ker(A^T*A) is a subset of ker(A) show that they are equal?
 
Let me use Latex for your convenience (you can click on them to learn how to write in case you don't know)...

B = A^T

Then,

\ker{(A)} \Rightarrow Ax=0 and \ker{(BA)} \Rightarrow BAx = 0

Now plug B in

\ker{(A^TA)} \Rightarrow A^TAx = 0

And what do you know about A^TA?
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top