What is the result of multiplying a vector by its complex conjugate?

  • Thread starter Thread starter hassouna
  • Start date Start date
  • Tags Tags
    Cauchy Momentum
hassouna
Messages
3
Reaction score
0
I found that the equation is expressed by
e3d8084bef8e3043efefed4ef511b1613eaa54a9


there is outer product ...what I really don't get it is if j is a vector then the outer product of j and j is is obtained by multiplying each element of j by the complex conjugate of each element of j which is basically a matrix not a vector
 
Last edited by a moderator:
Physics news on Phys.org
hassouna said:
I found that the equation is expressed by
e3d8084bef8e3043efefed4ef511b1613eaa54a9


there is outer product ...what I really don't get it is if j is a vector then the outer product of j and j is is obtained by multiplying each element of j by the complex conjugate of each element of j which is basically a matrix not a vector
But when you take the divergence of the outer product of j and j, this yields a vector.
 
divergence is a vector operator we can't operate it on matrix can't we??
 
hassouna said:
divergence is a vector operator we can't operate it on matrix can't we??
Yes. The divergence of a vector is a scalar. The divergence of a 2nd order tensor is a vector. You need to check the literature to see how to take the divergence of a tensor (basically a dyad). See Appendix A of Transport Phenomena by Bird, Stewart, and Lightfoot to see how to work with dyadics and other 2nd order tensors.
 
thank you for your help :smile:
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top