What is the role of linear operators in quantum mechanics?

Roodles01
Messages
125
Reaction score
0

Homework Statement


Just starting third level Uni. stuff & am faced with linear operators from Quantum Mechanics & need a little help.
OK, an operator, Ô, is said to be linear if it satisfies the equation
Ô(α f1 + β f2) = α(Ô f1) + β(Ô f2)
Fine

but I have an equation I can't wrap my head around, maybe just rusty, a hint would be nice, though.



Homework Equations


Ô1 = d/dx;
Ô2 =3 d/dx +3x^2;

 
Find the new functions obtained by acting with each of these operators on
(a) g(x, t) =3 d/dx +3x^2
(b) h(x, t)=α sin(kx − ωt).



The Attempt at a Solution


Now
Ô1 g(x,t) = 6xt^3
But not sure about how to get
Ô2 g(x,t) =

how to get this middle bit, please . . . . .

Answer is 18xt^3 + 9x^4 t^3
 
Physics news on Phys.org
You realize there's no 't' dependence in g(x,t), so that the outcome must be independent of t, right ? Actually the way you wrote it, g(x,t) is Ô2, not a wavefunction, but also an operator.
 
I went back to the question, scanned the problem in & looking again showed a huge error in seeing things.
What a twit.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top