Bill Foster
- 334
- 0
Homework Statement
This isn't a homework problem. I am reading Sakurai (Modern Quantum Mechanics) and came upon this:
We must therefore have an operator identity
\left[\textbf{x},\hat{T}\left(d\textbf{x}'\right)\right]=d\textbf{x}' (1.6.25)
or
-i\textbf{xK}\cdot d\textbf{x}'+i\textbf{K}\cdot d\textbf{x}'\textbf{x}=d\textbf{x}' (1.6.26)
The Attempt at a Solution
When I work that out:
\left[\textbf{x},\hat{T}\left(d\textbf{x}' \right)\right]=\textbf{x}\left(1-i\textbf{K}\cdot d\textbf{x}' \right)-\left(1-i\textbf{K}\cdot d\textbf{x}' \right)\textbf{x}
=-i\textbf{xK}\cdot d\textbf{x}'+i\textbf{K}\cdot d\textbf{x}'\textbf{x}
=i\left(\textbf{K}\cdot d\textbf{x}'\textbf{x}-\textbf{xK}\cdot d\textbf{x}' \right)
=d\textbf{x}'
I'm not seeing how they get d\textbf{x}' out of that.