What is the significance of the grand partition function in an Einstein solid?

Ted Ali
Messages
11
Reaction score
1
Homework Statement
Calculate the average number of oscillators of an Einstein solid, in the grand canonical ensemble, when q>>N. N is the number of oscillators and q the total number of energy quanta.
Relevant Equations
I am quoting from "Equilibrium and non-Equilibrium Statistical Thermodynamics", by M. Bellac.
$$Q_{(\alpha, \beta)} = \sum_{N=0}^{\infty} e^{\alpha N} Z_{N}(\alpha, \beta) \hspace{1cm} (3.127)$$ $$\beta = \frac{1}{kT} \hspace{1cm} \alpha = \frac{\mu}{kT} \hspace{1cm} (3.128)$$ $$\bar{N} = \frac{\partial{\ln Q}}{\partial \alpha} \hspace{1cm} (3.129)$$
$$q >> N \rightarrow q \approx 10^z N, z \geq 2$$
In this case: $$\mu = -kT\ln(\frac{q}{N}) \hspace{1cm} (1)$$ Reference: Daniel V. Schroeder, An Introduction to Thermal Physics,
(Addison-Wesley, 2000) - Problems 3.35 - 3.36.
$$Z_{N} = \frac{N}{2 \sinh(\frac{hf}{2kT})} = N\cdot C \hspace{1cm} (2)$$
$$Q_{(\alpha, \beta)} = \sum_{N=0}^{\infty} e^{\alpha N} Z_{N}(\alpha, \beta) \hspace{1cm} (3.127)$$
Where ##Q## is the grand partition function, ##Z_N## is the canonical partition function and:
$$\beta = \frac{1}{kT} \hspace{1cm} \alpha = \frac{\mu}{kT} \hspace{1cm} (3.128)$$
In the case of an Einstein solid, ##N## is the number of oscillators and ##q## the total quanta of energy. We are interested in the case: $$q >> N \rightarrow q \approx 10^z N, z \geq 2$$ In this case: $$\mu = -kT\ln(\frac{q}{N}) \hspace{1cm} (1)$$ Reference: Daniel V. Schroeder, An Introduction to Thermal Physics,
(Addison-Wesley, 2000) - Problems 3.35 - 3.36.
From https://en.wikipedia.org/wiki/Einstein_solid, we get: $$Z_{N} = \frac{N}{2 \sinh(\frac{hf}{2kT})} = N\cdot C \hspace{1cm} (2)$$
Where $$C = \frac{1}{2\sinh(\frac{hf}{2kT})} \hspace{1cm} (3)$$
##C## depends only on ##\beta##. Substituting in ##(3.127)##, we get:
$$Q = C \cdot \sum_{N=0}^{\infty} e^{\alpha N} \cdot N = C \cdot \sum_{N=0}^{\infty} e^{\ln((\frac{N}{q})^N)} \cdot N = $$ $$ = C \cdot \sum_{N=0}^{\infty} N (\frac{N}{q})^N \hspace{1cm} (4)$$
Since ##q >> N##, (4) becomes:
$$Q \cong \left(C\cdot \frac{N}{q}\right) \Rightarrow$$ $$ \Rightarrow \ln{Q} \cong \ln{\frac{C}{ q}} + \ln{N} \hspace{1cm} (5)$$

Quoting ##(3.129)##: $$\bar{N} = \frac{\partial{\ln{Q}}}{\partial \alpha} = \frac{\partial{\ln{Q}}}{\partial N}\cdot \frac{1}{\frac{\partial \alpha}{\partial N}} = \frac{\frac{1}{N}}{\frac{1}{N}} \Rightarrow$$ $$\Rightarrow \bar{N} = 1 \hspace{1cm} (6)$$
I would like you to let me know of my errors in calculations, comments, etc. If I am correct in my calculations, is it equilibrium or non-equilibrium statistics? How about ##\Delta N##, when we start from ##N \approx 10^{10}##?
 
Last edited:
Physics news on Phys.org
The main question is whether ##q## should be considered a constant, or else, dependent on every value ##N## takes, in the sum.
 
Should ##N## have an upper bound other than infinity? Should we consider an interaction between systems (instead of the isolated Einstein solid), governed by the grand canonical ensemble? Is the derivation of the chemical potential ##(\mu)## in the microcanonical ensemble, not applicable in the case of the grand canonical ensemble?
 
Last edited:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top