What is the surface charge density?

AI Thread Summary
The discussion focuses on calculating the potential difference and surface charge density between two parallel metal plates with opposite charges. The potential difference is determined to be 1.824 V, with the positively charged plate at a higher potential. The main challenge arises in calculating the surface charge density on the positive sheet, which is not clearly understood by the poster. Participants suggest consulting the textbook for information on the electric field produced by an infinite sheet of charge, which is essential for solving this problem. Understanding these concepts is crucial for accurately determining the surface charge density.
s0mebody
Messages
9
Reaction score
0

Homework Statement


Two large parallel metal plate sheets carrying opposite electric charges of equal magnitude are separated by a distance of 38.0mm. The electric field between them is uniform and has magnitude 480 N/C.

a) What is the potential difference between the sheets?
b) Which sheet is at higher potential, the one with positive or negative charge?
c) What is the surface charge density D on the positive sheet?

Homework Equations


The Attempt at a Solution



I have solved a and b.

a) W/q = Potential Difference = Ed = 480(0.0038) = 1.824 V
b) Positive charge

For letter C, I have no idea how do it. It's my first time encountering the term surface charge density on this kind of problem... Pleas help.
 
Last edited:
Physics news on Phys.org
Consult your text. I'm sure your book talks about the electric field due to an infinite sheet of charge.
 
vela said:
Consult your text. I'm sure your book talks about the electric field due to an infinite sheet of charge.

Can you elaborate further? I didn't quite understand.
 
I'm saying read your textbook. You should know the electric field for three common charge configurations: a point charge, a line charge, and a sheet of charge. Your book will cover these.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top