What is the value of f(-\mathbf{q} + \mathbf{q'}) and how do I solve for it?

  • Thread starter Thread starter MadMax
  • Start date Start date
MadMax
Messages
98
Reaction score
0
I have:

\int d^3 \mathbf{q} d^3 \mathbf{q'} K_{ij} K_{ji} f(-\mathbf{q}+\mathbf{q'})f(-\mathbf{q}+\mathbf{q'})

and f(\mathbf{q})=\frac{i}{q_z}\int d^2 \mathbf{x} e^{i \mathbf{q_\perp} \cdot \mathbf{x}} [a e^{i q_z[H+h_2(\mathbf{x})]} - b e^{i q_z h_1(\mathbf{x})}]

What does f(-\mathbf{q} + \mathbf{q'}) equal?

x is real space and q is Fourier space. I'm thinking I can simply substitute the q for -q + q' , but what about the integral over x and the x values? do i substitute x for -x + x' too? I can't see that turning out the way its supposed to...

Any help would be much appreciated.
 
Last edited:
Physics news on Phys.org
any ideas/hints? o_o
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top