What is the value of the corresponding contour integral?

bugatti79
Messages
786
Reaction score
4

Homework Statement



Convert the following to an equivalent cotour integral around |z|=1 then use Cauchy's integral formula to evaluate it.

##\int_{0}^{2 \pi} \frac {d \theta}{13+5 \sin \theta}##

Homework Equations


let ##z=e^{i \theta}##


The Attempt at a Solution



##d \theta = \frac{dz}{i z}##

##\displaystyle \int_{0}^{2 \pi} \frac {d \theta}{13+5 \sin \theta}=\int_{|z|=1} \frac {dz/iz}{13+5/2i(e^{i \theta} -e^{-i \theta})}\frac{2iz}{2iz}##

##\displaystyle =\int_{|z|=1} \frac {2dz}{26iz+5z^2-5}##

where the denominator has the roots ##i(2.6 \pm 2.4)## using quadratic formula...so far ok?
 
Physics news on Phys.org
bugatti79 said:

Homework Statement



Convert the following to an equivalent cotour integral around |z|=1 then use Cauchy's integral formula to evaluate it.

##\int_{0}^{2 \pi} \frac {d \theta}{13+5 \sin \theta}##

Homework Equations


let ##z=e^{i \theta}##


The Attempt at a Solution



##d \theta = \frac{dz}{i z}##

##\displaystyle \int_{0}^{2 \pi} \frac {d \theta}{13+5 \sin \theta}=\int_{|z|=1} \frac {dz/iz}{13+5/2i(e^{i \theta} -e^{-i \theta})}\frac{2iz}{2iz}##

##\displaystyle =\int_{|z|=1} \frac {2dz}{26iz+5z^2-5}##

where the denominator has the roots ##i(2.6 \pm 2.4)## using quadratic formula...so far ok?

The integral is ok but I get different signs on the roots. Maybe double check them.
 
bugatti79 said:

Homework Statement



Convert the following to an equivalent cotour integral around |z|=1 then use Cauchy's integral formula to evaluate it.

##\int_{0}^{2 \pi} \frac {d \theta}{13+5 \sin \theta}##

Homework Equations


let ##z=e^{i \theta}##


The Attempt at a Solution



##d \theta = \frac{dz}{i z}##

##\displaystyle \int_{0}^{2 \pi} \frac {d \theta}{13+5 \sin \theta}=\int_{|z|=1} \frac {dz/iz}{13+5/2i(e^{i \theta} -e^{-i \theta})}\frac{2iz}{2iz}##

##\displaystyle =\int_{|z|=1} \frac {2dz}{26iz+5z^2-5}##

where the denominator has the roots ##i(2.6 \pm 2.4)## using quadratic formula...so far ok?

jackmell said:
The integral is ok but I get different signs on the roots. Maybe double check them.

Yes, you are right, should be ##(-2.6 \pm 2.4)i##

continuing on

##|(-2.6 +2.4)i| < 1 \implies (-2.6 +2.4)i## lies inside ##|z|=1##
##|(-2.6 -2.4)i| > 1 \implies (-2.6 -2.4)i## lies outside ##|z|=1 \therefore##

##\displaystyle \int_{|z|=1} \frac {2dz}{26iz+5z^2-5}=2 \pi i f(-2.6+2.4)i=##

##\displaystyle 2 \pi i \frac{2}{(-2.6-2.4)i-(-2.6+2.4)i}=-\frac{\pi}{1.2}##...?
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top