What Is the vrms for This Gas Distribution?

AI Thread Summary
The discussion focuses on calculating the root mean square (vrms) speed of a gas with a specific distribution of molecular speeds. The initial attempts involved complex calculations of kinetic energy, leading to incorrect vrms values. The correct approach emphasizes that vrms should be derived directly from the velocity distribution by squaring the speeds, finding the weighted average of these squares, and then taking the square root. Ultimately, the correct vrms was determined to be approximately 707 m/s after simplifying the calculations. The key takeaway is that vrms depends solely on the velocity distribution, not on total internal energy calculations.
Qwurty2.0
Messages
18
Reaction score
0

Homework Statement


A gas consisting of 15,200 molecules, each of mass 2.00 x 10-26 kg, has the following distribution of speeds, which crudely mimics the Maxwell distribution:

Number of Molecules - Speed (m/s)
1600 - 220
4100 - 440
4700 - 660
3100 - 880
1300 - 1100
400 - 1320

(a) Determine vrms for this distribution of speeds.

Homework Equations


vrms = √(2 * Ek/m)
Ek = (1/2) * n * M * v2

The Attempt at a Solution


Weighted Average
((1600 * 220) + (4100 * 440) + (4700 * 660) + (3100 * 880) + (1300 * 1100) + (400 * 1320)) / 15200
= (9944000 m/s) / 15200
= 654.32 m/s

vrms = √(2 * Ek/m)
Ek = (1/2) * n * M * v2
n = number of moles
M = molar mass
m = mass of single molecule

n = 15200 molecules / 6.02x1023 molecules/mole
= 2.525x10-20 mole

M = 2.00x10-26 kg / molecule * 6.02x1023 molecules / mole
= 0.01204 kg / mol

Ek = (1/2)(2.525x10-20moles)(0.01204 kg / mole)(654.21 m/s)2
= 6.506x10-17kg⋅m/s

vrms = √(2 * (6.506x10-17 kg⋅m/s) / 2.00x10-26 kg)
= 80659.78 m/s ...

The correct answer is 710 m/s so obviously I am either grossly overcomplicating this, or I am using the wrong equation.
 
Physics news on Phys.org
RMS means "root mean square". It's the square root of the mean of the square, so take the velocities and square them, find the weighted average of the squares, and then take the square root of the average.
 
I did what you said: I squared the velocities, then I calculated the weighted average (same way as I did above), and then took the square root of the weighted average. I ended up getting 82914.03 m/s, which is close to the answer I originally got but not the correct answer.

What am I missing?
 
I got 707 m/s. I gather you're still messing around with calculating the kinetic energy, etc. That's unnecessary. The rms speed depends only on the velocity distribution of the molecules.

Your mistake seems to be that you're calculating the total internal energy of the gas, but ##E_k## is supposed to be the average kinetic energy of a single molecule.
 
My bad, I calculated it wrong. I tried again and got the right answer.

Thank you!
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top