What is the wavelength of the light in the interposed material?

RWalker1987
Messages
1
Reaction score
0

Homework Statement


A Michelson interferometer is operated in a vacuum, using monochromatic
light of wavelength 589 nm. The interferometer is set up so that the distances
between the moving mirror and the beam splitter and the fixed mirror and the
beam splitter are equal. A parallel-sided object 1.2 cm in length and refractive
index 1.4900 is then placed between the fixed mirror and the beam splitter.

What is the change in the optical path length of the fixed arm that results?

Homework Equations



this is were I'm stuck, I don't know what equation to use, I have looked all over for an equation, but most use frequency

The Attempt at a Solution

 
Physics news on Phys.org
What is the relationship between wavelength and frequency? ;0)
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top