How can ##\vec{\Psi}=\vec{E}+i*\vec{B}## describe a situation, where parameters of photons are dependnt of each other. For example if electron and positron decay on surface x=0 at time t=0:
probability that ##p_{x\ photon1}>0## is 0.5 and probability that ##p_{x\ photon2}>0## ,but
probability that ##p_{x\ photon1}>0## and ##p_{x\ photon2}>0## is not 0.25 ,but 0.
with wavefunction ##\Psi(x_{photon\ 1},y_{photon\ 1},z_{photon\ 1},x_{photon\ 2},y_{photon\ 2},z_{photon\ 2})## it can be expressed as
##\int_0^\infty(dx_1*\int_{-\infty}^\infty(dx_2*\int_{-\infty}^\infty(dx_3*\int_{-\infty}^\infty(dx_4*\int_{-\infty}^\infty(dx_5*\int_{0}^\infty(dx_6*|\Psi(x_1,x_2,x_3,x_4,x_5,x_6)|^2)))))=0.5##
##\int_{-\infty}^\infty(dx_1*\int_{-\infty}^\infty(dx_2*\int_{-\infty}^\infty(dx_3*\int_{-\infty}^\infty(dx_4*\int_{0}^\infty(dx_5*\int_{-\infty}^\infty(dx_6*|\Psi(x_1,x_2,x_3,x_4,x_5,x_6)|^2)))))=0.5##
##\int_0^\infty(dx_1*\int_{-\infty}^\infty(dx_2*\int_{-\infty}^\infty(dx_3*\int_{-\infty}^\infty(dx_4*\int_{0}^\infty(dx_5*\int_{-\infty}^\infty(dx_6*|\Psi(x_1,x_2,x_3,x_4,x_5,x_6)|^2)))))=0\neq 0.25##
, but ##\vec{\Psi}(t,x,y,z)=\vec{E}(t,x,y,z)+i*\vec{B}(t,x,y,z)## only function of space and time and can't describe such situation.
Given situation may be impossible because uncercanty principle, but question is still up: How to describe parameters of photon that are releated with each other that way.