When do inductors act like a short circuit and when they dont?

In summary: Then the current will gradually decrease as the inductor begins to saturate, and the voltage across the inductor will eventually settle back to the supply voltage.
  • #1
meanswing
10
0
-My professor said that if i is constant through an inductor that V=0 through the formula V=L(dv/dt) . So if an inductor is in series with a voltage source it will act like a short circuit. But if the inductor is in series with a resistor and the voltage source the inductor will not act like a short circuit.

-My question is why doesn't the inductor act like a short circuit if the inductor is in series with a resistor and a voltage source. Wouldnt the current through the circuit be constant? Is the current through the inductor different when it is in series with the resistor? Please explain this to me because I am totaly confuse.

Attached is the example:
inductor-1.jpg
 
Engineering news on Phys.org
  • #2
Under DC, a constant current, the inductor acts as if it weren't there. So all you have left is the resistor... so to speak.

However, if the current is changing, like in AC, then voltage will be induced across the inductor.
 
  • #3
meanswing said:
-My professor said that if i is constant through an inductor that V=0 through the formula V=L(dv/dt) .

Of course, you meant to write, V = L(di/dt).

So if an inductor is in series with a voltage source it will act like a short circuit.

A voltage source can be changing, like an AC voltage source, but I think your professor is talking about a constant DC voltage source.

Let's take 'short circuit' to mean that the component acts like a ideal conductor. This would mean that any current through the component would result in zero voltage across the component.

A constant voltage applied across an ideal inductor will result in a constantly increasing current. This is not a short circuit.

You need to talk to your professor and work it out.
 
  • #4
sorry i forgot to say this situation is for DC source. So can you explain these two examples. The one with a resistor and the one without. Wouldnt the inductor act like a short circuit in both of them since the current through the circuit is constant? Is the current different from the current entering the inductor and the current leaving the inductor? Please explain . I am so confused.
 
  • #5
Sure, the theoretical inductor is a short... but no such inductor exists in the real world. Every inductor really has an inductive component and a resistive component. The resistive component and the inductive component are separated in the analysis for the purposes of simplifying the calculation. Every inductor really has resistance, and what I think your professor means to say is that in a DC cct the inductor behaves like a resistance only. The zero ohm inductor is a theoretical nonesuch, it's just that the inductance plays no part in determining the value of the DC current.

Hard to get your head around this? Write back, we've all been there.
 
  • #6
thank for everyones help.
 
  • #7
The inductor will act like a short circuit in both cases for a DC voltage source.

edit: I guess your question has been answered already.
 
  • #8
meanswing said:
sorry i forgot to say this situation is for DC source. So can you explain these two examples. The one with a resistor and the one without. Wouldnt the inductor act like a short circuit in both of them since the current through the circuit is constant?

Without a resistor, for a hypothetical constant-voltage source, no the inductor does not act like a short:
Phrak said:
A constant voltage applied across an ideal inductor will result in a constantly increasing current. This is not a short circuit.

With a resistor present, the inductor acts like a short (0 voltage, with non-zero current) only after some time has passed.
 
  • #9
Meanswing has another thread :
https://www.physicsforums.com/showthread.php?t=349614

which makes me wonder if he is missing the point here.

These are questions about what happens to an inductor when power is applied or removed.

Especially when it is removed, the inductor generates a large positive going spike.
It does eventually settle to being purely resistive (due to the resistance in the wire of the coil) but for a short period when power is applied or removed, the inductor is nothing like a short circuit. A low value resistor directly across the inductor will limit the magnitude of this spike.

If DC power is applied directly across an inductor, there may not be much of a spike because the power source might have very low internal resistance and the supply continues to supply much the same voltage regardless of changing current in the inductor.
The current will increase until it is limited by the series resistance of the inductor.
 

1. When do inductors act like a short circuit?

Inductors act like a short circuit when they are connected to an AC voltage source and the frequency of the AC voltage is high enough that the inductance of the inductor becomes negligible.

2. When do inductors not act like a short circuit?

Inductors do not act like a short circuit when they are connected to a DC voltage source or an AC voltage source with a low frequency, as the inductance of the inductor will have a significant effect on the current flow.

3. Can inductors ever act like a short circuit in a DC circuit?

No, inductors cannot act like a short circuit in a DC circuit as the inductance will always have an effect on the current flow, regardless of the frequency.

4. How can I calculate the frequency at which an inductor will act like a short circuit?

You can calculate the frequency at which an inductor will act like a short circuit by using the formula f = 1/(2*pi*sqrt(L*C)), where f is the frequency, L is the inductance of the inductor, and C is the capacitance of the circuit.

5. Why is it important to understand when inductors act like a short circuit?

It is important to understand when inductors act like a short circuit because they can cause unexpected behavior in a circuit and can potentially damage components. By understanding when an inductor will act like a short circuit, you can design circuits that operate correctly and safely.

Similar threads

  • Electrical Engineering
Replies
13
Views
1K
  • Electrical Engineering
Replies
25
Views
2K
Replies
4
Views
936
Replies
44
Views
3K
Replies
93
Views
5K
  • Electrical Engineering
Replies
5
Views
2K
  • Electrical Engineering
2
Replies
38
Views
4K
  • Electrical Engineering
Replies
1
Views
1K
  • Electrical Engineering
Replies
15
Views
2K
  • Electrical Engineering
Replies
7
Views
3K
Back
Top