When the rocket reaches its maximum height, what is its kinetic energy?

AI Thread Summary
When a model rocket with a mass of 4.3 kg is launched at 65 m/s, its initial kinetic energy is calculated to be 9083.75 J. As the rocket ascends, its kinetic energy decreases while its potential energy increases. At maximum height, the rocket's velocity is 0, resulting in a kinetic energy of 0 J. Conversely, the potential energy at this point is at its maximum. This illustrates the energy transformation between kinetic and potential energy during the rocket's flight.
laurenyntema
Messages
3
Reaction score
0
1. A model rocket with a mass of 4.3kg is launched straight up at a speed of 65m/s. Kinetic energy when it takes off is 9083.75 J. Total energy when it takes off is also 9083.75J. When the rocket reaches its maximum height, what is its kinetic energy?



2. KE(kinetic energy)=1/2MV^2



3. KE= 1/2(4.3)(65^2)
KE=1/2(4.3)(4225)
KE=1/2(18167.5)
KE=9083.75... not sure where to go from here...

 
Physics news on Phys.org
Consider what its speed will be, just as it reaches the maximum height, and an instant before it begins to fall back down.
 
To add to what mikelepore noted, remember that generally kinetic energy has to do with movement, and that with things like rockets and pendulums and such, the kinetic energy decreases as the potential energy increases. You're launching straight up, so you only have to worry about what's happening on a single axis.
 
Ok, thanks!
I actually understand! Because kinetic energy is the energy due to motion, at maximum height the rocket would have a velocity of 0. Therefore, since there is actually no action taking place the kinetic energy is 0.
 
Exactly :)

And conversely, it's potential energy is now at maximum.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top