Saladsamurai
- 3,009
- 7
So I am using int by parts to evaluate \int_{-1}^1\ln(x+2)dx
I am doing something incorrectly with the indefinite int part of this problem, but I can'y find my error, can you?
\int udv=uv-\int vdu
u=ln(x+2)
\Rightarrow du=\frac{dx}{x+2}
dv=dx
\Rightarrow v=x
So I get:
x\ln(x+2)-\int\frac{x}{x+2}dx
Working on only the last part ^^^by long division I get:
\int\frac{x}{x+2}dx=\int(1-\frac{2}{x+2})dx
=x-2\ln(x+2)
and recombining with the top:
x\ln(x+2)-x+2\ln(x+2)
But when I evaluate this on my calculator, I get the incorrect answer. Any ideas?
Casey
I am doing something incorrectly with the indefinite int part of this problem, but I can'y find my error, can you?
\int udv=uv-\int vdu
u=ln(x+2)
\Rightarrow du=\frac{dx}{x+2}
dv=dx
\Rightarrow v=x
So I get:
x\ln(x+2)-\int\frac{x}{x+2}dx
Working on only the last part ^^^by long division I get:
\int\frac{x}{x+2}dx=\int(1-\frac{2}{x+2})dx
=x-2\ln(x+2)
and recombining with the top:
x\ln(x+2)-x+2\ln(x+2)
But when I evaluate this on my calculator, I get the incorrect answer. Any ideas?
Casey
Last edited: