Which cube has a larger moment of inertia?

Cosmossos
Messages
100
Reaction score
0
To which of the two cubes has a larger moment of inertia?
attachment.php?attachmentid=23012&d=1263306125.jpg


I think it's the right one because We know that the minimal moment of inertia is throw the principal axes that goes throw the center of mass. in the right one , the rotation isn't throw the principal axes . there is also the following theorem :

The moment of inertia about an arbitrary axis is equal to the
moment of inertia about a parallel axis passing through the
center of mass plus the moment of inertia of the body about
the arbitrary axis, taken as if all of the mass M of the body
were at the center of mass.

Am I wrong?
 
Physics news on Phys.org
If I'm reading your diagram correctly, the parallel axis theorem wouldn't apply since in both cases, the axis passes through the center of mass of the cube. But if the moment of inertia is always minimized around a principal axis, that would be a valid reason for arguing that the one on the right is greater.

Personally, I might try to work it out by integration to really convince myself.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top